-
1
-
-
2442612239
-
Laplace's method approximations for probabilistic inference in belief networks with continuous variables
-
San Mateo, CA: Morgan Kaufmann
-
Azevedo-Filho, A. & Shachter, R. (1994). Laplace's method approximations for probabilistic inference in belief networks with continuous variables. In Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence (pp. 28-36). San Mateo, CA: Morgan Kaufmann.
-
(1994)
Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence
, pp. 28-36
-
-
Azevedo-Filho, A.1
Shachter, R.2
-
3
-
-
0002906163
-
Improving the convergence of back-propagation learning with second order methods
-
San Mateo, CA: Morgan Kaufmann
-
Becker, S. & LeCun, Y. (1989). Improving the convergence of back-propagation learning with second order methods. In Proceedings of the 1988 Connectionist Models Summer School (pp. 29-37). San Mateo, CA: Morgan Kaufmann.
-
(1989)
Proceedings of the 1988 Connectionist Models Summer School
, pp. 29-37
-
-
Becker, S.1
LeCun, Y.2
-
6
-
-
0028424954
-
Computing second derivatives in feed-forward networks: A review
-
Buntine, W. (1994a). Computing second derivatives in feed-forward networks: A review. IEEE Transactions on Neural Networks, 5, 480-488.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 480-488
-
-
Buntine, W.1
-
9
-
-
0002607026
-
Bayesian classification (AutoClass): Theory and results
-
Fayyad, U., Piatesky-Shapiro, G., Smyth, P., & Uthurusamy, R.(Eds.), Menlo Park, CA: AAAI Press
-
Cheeseman, P. & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results. In Fayyad, U., Piatesky-Shapiro, G., Smyth, P., & Uthurusamy, R.(Eds.), Advances in knowledge discovery and data mining, pp. 153-180. Menlo Park, CA: AAAI Press.
-
(1995)
Advances in Knowledge Discovery and Data Mining
, pp. 153-180
-
-
Cheeseman, P.1
Stutz, J.2
-
11
-
-
0042883436
-
Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network
-
San Mateo, CA: Morgan Kaufmann
-
Chickering, D. & Heckerman, D. (1996). Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 158-168). San Mateo, CA: Morgan Kaufmann.
-
(1996)
Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence
, pp. 158-168
-
-
Chickering, D.1
Heckerman, D.2
-
12
-
-
0002483675
-
Latent class models
-
Arminger, G., Clogg, C., & Sobel, M. (Eds.), Plenum Press, New York
-
Clogg, C. (1995). Latent class models. In Arminger, G., Clogg, C., & Sobel, M. (Eds.), Handbook of statistical modeling for the social and behavioral sciences. Plenum Press, New York.
-
(1995)
Handbook of Statistical Modeling for the Social and Behavioral Sciences
-
-
Clogg, C.1
-
13
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
14
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society, B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
15
-
-
0002276308
-
Assessment and propagation of model uncertainty
-
Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society B, 57, 45-97.
-
(1995)
Journal of the Royal Statistical Society B
, vol.57
, pp. 45-97
-
-
Draper, D.1
-
17
-
-
0002017385
-
Asymptotic model selection for directed networks with hidden variables
-
San Mateo, CA: Morgan Kaufmann
-
Geiger, D., Heckerman, D., & Meek, C. (1996). Asymptotic model selection for directed networks with hidden variables. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 283-290). San Mateo, CA: Morgan Kaufmann.
-
(1996)
Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence
, pp. 283-290
-
-
Geiger, D.1
Heckerman, D.2
Meek, C.3
-
18
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
Geman, S. & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-742.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-742
-
-
Geman, S.1
Geman, D.2
-
21
-
-
0003911539
-
-
Tech. rep., M.E.D.C., 33 North End, Royston, SG8 6NR, England
-
Gull, S. & Skilling, J. (1991). Quantified maximum entropy. MemSys5 user's manual. Tech. rep., M.E.D.C., 33 North End, Royston, SG8 6NR, England.
-
(1991)
Quantified Maximum Entropy. MemSys5 User's Manual
-
-
Gull, S.1
Skilling, J.2
-
22
-
-
0000554045
-
On the choice of a model to fit data from an exponential family
-
Haughton, D. (1988). On the choice of a model to fit data from an exponential family. Annals of Statistics, 16, 342-355.
-
(1988)
Annals of Statistics
, vol.16
, pp. 342-355
-
-
Haughton, D.1
-
23
-
-
0003846041
-
-
Tech. rep. MSR-TR-95-06, Microsoft Research, Redmond, WA. Revised January
-
Heckerman, D. (1995). A tutorial on learning Bayesian networks. Tech. rep. MSR-TR-95-06, Microsoft Research, Redmond, WA. Revised January, 1996.
-
(1995)
A Tutorial on Learning Bayesian Networks
-
-
Heckerman, D.1
-
24
-
-
0003846045
-
-
Tech. rep. MSR-TR-95-54, Microsoft Research, Redmond, WA
-
Heckerman, D. & Geiger, D. (1995). Likelihoods and priors for Bayesian networks. Tech. rep. MSR-TR-95-54, Microsoft Research, Redmond, WA.
-
(1995)
Likelihoods and Priors for Bayesian Networks
-
-
Heckerman, D.1
Geiger, D.2
-
25
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
26
-
-
0025792756
-
Optimal discriminant plane for a small number of samples and design method of classifier on the plane
-
Hong, Z. & Yang, J. (1994). Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 24, 317-324.
-
(1994)
Pattern Recognition
, vol.24
, pp. 317-324
-
-
Hong, Z.1
Yang, J.2
-
28
-
-
0001698979
-
Bayesian updating in recursive graphical models by local computations
-
Jensen, F., Lauritzen, S., & Olesen, K. (1990). Bayesian updating in recursive graphical models by local computations. Computational Statisticals Quarterly, 4, 269-282.
-
(1990)
Computational Statisticals Quarterly
, vol.4
, pp. 269-282
-
-
Jensen, F.1
Lauritzen, S.2
Olesen, K.3
-
30
-
-
0012983316
-
Asymptotics in Bayesian computation
-
Bernardo, J., DeGroot, M., Lindley, D., & Smith, A.(Eds.), Oxford University Press
-
Kass, R., Tierney, L., & Kadane, J. (1988). Asymptotics in Bayesian computation. In Bernardo, J., DeGroot, M., Lindley, D., & Smith, A.(Eds.), Bayesian statistics 3 (pp. 261-278). Oxford University Press.
-
(1988)
Bayesian Statistics
, vol.3
, pp. 261-278
-
-
Kass, R.1
Tierney, L.2
Kadane, J.3
-
31
-
-
27944462549
-
A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
-
Kass, R. & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90, 928-934.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 928-934
-
-
Kass, R.1
Wasserman, L.2
-
32
-
-
0001025418
-
Bayesian interpolation
-
MacKay, D. (1992a). Bayesian interpolation. Neural Computation, 4, 415-447.
-
(1992)
Neural Computation
, vol.4
, pp. 415-447
-
-
MacKay, D.1
-
33
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay, D. (1992b). A practical Bayesian framework for backpropagation networks. Neural Computation, 4, 448-472.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
MacKay, D.1
-
36
-
-
84864615423
-
Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
-
Meng, X. & Rubin, D. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86, 899-909.
-
(1991)
Journal of the American Statistical Association
, vol.86
, pp. 899-909
-
-
Meng, X.1
Rubin, D.2
-
38
-
-
0001161341
-
Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis
-
Michalski, R. & Chilausky, R. (1980). Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4.
-
(1980)
International Journal of Policy Analysis and Information Systems
, vol.4
-
-
Michalski, R.1
Chilausky, R.2
-
39
-
-
0005647921
-
-
Tech. rep. CRG-TR-91-2, Department of Computer Science, University of Toronto
-
Neal, R. (1991). Bayesian mixture modeling by Monte Carlo simulation. Tech. rep. CRG-TR-91-2, Department of Computer Science, University of Toronto.
-
(1991)
Bayesian Mixture Modeling by Monte Carlo Simulation
-
-
Neal, R.1
-
42
-
-
0001201909
-
Bayesian model selection in social research
-
Marsden, P. (Ed.), Cambridge, MA: Blackwells
-
Raftery, A. (1995). Bayesian model selection in social research. In Marsden, P. (Ed.), Sociological methodology. Cambridge, MA: Blackwells.
-
(1995)
Sociological Methodology
-
-
Raftery, A.1
-
45
-
-
0017133178
-
Inference and missing data
-
Rubin, D. (1976). Inference and missing data. Biometrika, 3, 581-592.
-
(1976)
Biometrika
, vol.3
, pp. 581-592
-
-
Rubin, D.1
-
46
-
-
85168119898
-
Local learning in probabilistic networks with hidden variables
-
Morgan Kaufmann, San Mateo, CA
-
Russell, S., Binder, J., Koller, D., & Kanazawa, K. (1995). Local learning in probabilistic networks with hidden variables. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1146-1152). Morgan Kaufmann, San Mateo, CA.
-
(1995)
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
, pp. 1146-1152
-
-
Russell, S.1
Binder, J.2
Koller, D.3
Kanazawa, K.4
-
47
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Saul, L., Jaakkola, T., & Jordan, M. (1996). Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61-76.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 61-76
-
-
Saul, L.1
Jaakkola, T.2
Jordan, M.3
-
48
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
49
-
-
84972488038
-
Bayesian analysis in expert systems
-
Spiegelhalter, D., Dawid, A., Lauritzen, S., & Cowell, R. (1993). Bayesian analysis in expert systems. Statistical Science, 8, 219-282.
-
(1993)
Statistical Science
, vol.8
, pp. 219-282
-
-
Spiegelhalter, D.1
Dawid, A.2
Lauritzen, S.3
Cowell, R.4
-
50
-
-
0003614273
-
-
New York: Springer-Verlag
-
Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction, and Search. New York: Springer-Verlag.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
|