메뉴 건너뛰기




Volumn 29, Issue 2-3, 1997, Pages 181-212

Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables

Author keywords

Bayesian model averaging; Clustering; Laplace approximation; Model selection; Multinomial mixtures; Unsupervised learning

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; MATHEMATICAL MODELS; MONTE CARLO METHODS;

EID: 0031272327     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (221)

References (51)
  • 1
    • 2442612239 scopus 로고
    • Laplace's method approximations for probabilistic inference in belief networks with continuous variables
    • San Mateo, CA: Morgan Kaufmann
    • Azevedo-Filho, A. & Shachter, R. (1994). Laplace's method approximations for probabilistic inference in belief networks with continuous variables. In Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence (pp. 28-36). San Mateo, CA: Morgan Kaufmann.
    • (1994) Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence , pp. 28-36
    • Azevedo-Filho, A.1    Shachter, R.2
  • 3
    • 0002906163 scopus 로고
    • Improving the convergence of back-propagation learning with second order methods
    • San Mateo, CA: Morgan Kaufmann
    • Becker, S. & LeCun, Y. (1989). Improving the convergence of back-propagation learning with second order methods. In Proceedings of the 1988 Connectionist Models Summer School (pp. 29-37). San Mateo, CA: Morgan Kaufmann.
    • (1989) Proceedings of the 1988 Connectionist Models Summer School , pp. 29-37
    • Becker, S.1    LeCun, Y.2
  • 6
    • 0028424954 scopus 로고
    • Computing second derivatives in feed-forward networks: A review
    • Buntine, W. (1994a). Computing second derivatives in feed-forward networks: A review. IEEE Transactions on Neural Networks, 5, 480-488.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 480-488
    • Buntine, W.1
  • 9
    • 0002607026 scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • Fayyad, U., Piatesky-Shapiro, G., Smyth, P., & Uthurusamy, R.(Eds.), Menlo Park, CA: AAAI Press
    • Cheeseman, P. & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results. In Fayyad, U., Piatesky-Shapiro, G., Smyth, P., & Uthurusamy, R.(Eds.), Advances in knowledge discovery and data mining, pp. 153-180. Menlo Park, CA: AAAI Press.
    • (1995) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 11
    • 0042883436 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network
    • San Mateo, CA: Morgan Kaufmann
    • Chickering, D. & Heckerman, D. (1996). Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 158-168). San Mateo, CA: Morgan Kaufmann.
    • (1996) Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence , pp. 158-168
    • Chickering, D.1    Heckerman, D.2
  • 13
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 15
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty
    • Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society B, 57, 45-97.
    • (1995) Journal of the Royal Statistical Society B , vol.57 , pp. 45-97
    • Draper, D.1
  • 22
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • Haughton, D. (1988). On the choice of a model to fit data from an exponential family. Annals of Statistics, 16, 342-355.
    • (1988) Annals of Statistics , vol.16 , pp. 342-355
    • Haughton, D.1
  • 23
    • 0003846041 scopus 로고
    • Tech. rep. MSR-TR-95-06, Microsoft Research, Redmond, WA. Revised January
    • Heckerman, D. (1995). A tutorial on learning Bayesian networks. Tech. rep. MSR-TR-95-06, Microsoft Research, Redmond, WA. Revised January, 1996.
    • (1995) A Tutorial on Learning Bayesian Networks
    • Heckerman, D.1
  • 25
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 26
    • 0025792756 scopus 로고
    • Optimal discriminant plane for a small number of samples and design method of classifier on the plane
    • Hong, Z. & Yang, J. (1994). Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 24, 317-324.
    • (1994) Pattern Recognition , vol.24 , pp. 317-324
    • Hong, Z.1    Yang, J.2
  • 28
    • 0001698979 scopus 로고
    • Bayesian updating in recursive graphical models by local computations
    • Jensen, F., Lauritzen, S., & Olesen, K. (1990). Bayesian updating in recursive graphical models by local computations. Computational Statisticals Quarterly, 4, 269-282.
    • (1990) Computational Statisticals Quarterly , vol.4 , pp. 269-282
    • Jensen, F.1    Lauritzen, S.2    Olesen, K.3
  • 30
    • 0012983316 scopus 로고
    • Asymptotics in Bayesian computation
    • Bernardo, J., DeGroot, M., Lindley, D., & Smith, A.(Eds.), Oxford University Press
    • Kass, R., Tierney, L., & Kadane, J. (1988). Asymptotics in Bayesian computation. In Bernardo, J., DeGroot, M., Lindley, D., & Smith, A.(Eds.), Bayesian statistics 3 (pp. 261-278). Oxford University Press.
    • (1988) Bayesian Statistics , vol.3 , pp. 261-278
    • Kass, R.1    Tierney, L.2    Kadane, J.3
  • 31
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass, R. & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90, 928-934.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 928-934
    • Kass, R.1    Wasserman, L.2
  • 32
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. (1992a). Bayesian interpolation. Neural Computation, 4, 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.1
  • 33
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. (1992b). A practical Bayesian framework for backpropagation networks. Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.1
  • 35
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan, D. & York, J. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 36
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
    • Meng, X. & Rubin, D. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86, 899-909.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 899-909
    • Meng, X.1    Rubin, D.2
  • 38
    • 0001161341 scopus 로고
    • Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis
    • Michalski, R. & Chilausky, R. (1980). Learning by being told and learning from examples: An experimental comparison of the two methods of knowledge acquisition in the context of developing an expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information Systems, 4.
    • (1980) International Journal of Policy Analysis and Information Systems , vol.4
    • Michalski, R.1    Chilausky, R.2
  • 39
    • 0005647921 scopus 로고
    • Tech. rep. CRG-TR-91-2, Department of Computer Science, University of Toronto
    • Neal, R. (1991). Bayesian mixture modeling by Monte Carlo simulation. Tech. rep. CRG-TR-91-2, Department of Computer Science, University of Toronto.
    • (1991) Bayesian Mixture Modeling by Monte Carlo Simulation
    • Neal, R.1
  • 42
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • Marsden, P. (Ed.), Cambridge, MA: Blackwells
    • Raftery, A. (1995). Bayesian model selection in social research. In Marsden, P. (Ed.), Sociological methodology. Cambridge, MA: Blackwells.
    • (1995) Sociological Methodology
    • Raftery, A.1
  • 45
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. (1976). Inference and missing data. Biometrika, 3, 581-592.
    • (1976) Biometrika , vol.3 , pp. 581-592
    • Rubin, D.1
  • 48
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.