메뉴 건너뛰기




Volumn 62, Issue , 2010, Pages 482-489

Novel hybrid method for gene selection and cancer prediction

Author keywords

Cancer Prediction; Classification; Clustering; Gene Selection; Lasso

Indexed keywords

CANCER PREDICTION; CLASSIFICATION; CLUSTERING; GENE SELECTION; LASSO; CLASSIFICATION ALGORITHM; CORRELATION COEFFICIENT; FEATURE SELECTION ALGORITHM; GENE GROUPS; GENE SPACE; HIGH DIMENSIONS; HYBRID METHOD; MICROARRAY DATA; PREDICTION METHODS; PREDICTION MODEL; PREDICTIVE ACCURACY; REAL WORLD DATA; RESEARCH TOPICS; SAMPLE SIZES;

EID: 78651594051     PISSN: 2010376X     EISSN: 20103778     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (49)
  • 1
    • 0035931968 scopus 로고    scopus 로고
    • Genome-wide views of cancer
    • T. Golub: Genome-wide views of cancer. New England Journal of Medicine, 344, 8, 601-602, 2001.
    • (2001) New England Journal of Medicine , vol.344 , Issue.8 , pp. 601-602
    • Golub, T.1
  • 2
    • 0036534202 scopus 로고    scopus 로고
    • DNA microarrays in clinical oncology
    • S. Ramaswamy, T. Golub: DNA microarrays in clinical oncology. Journal of clinical oncology, 20, 7, 1932-1941, 2002.
    • (2002) Journal of clinical oncology , vol.20 , Issue.7 , pp. 1932-1941
    • Ramaswamy, S.1    Golub, T.2
  • 3
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, C. Ding: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. on Pattern analysis and machine intelligence, 27, 1226-1238, 2005.
    • (2005) IEEE Trans. on Pattern analysis and machine intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 6
    • 33645092633 scopus 로고    scopus 로고
    • Additive risk models for survival data with high dimensional covariates
    • S. Ma, M. Kosorok, M, J. Fine: Additive risk models for survival data with high dimensional covariates. Biometrics, 62, 202-210, 2006.
    • (2006) Biometrics , vol.62 , pp. 202-210
    • Ma, S.1    Kosorok, M.2    Fine, M.J.3
  • 7
    • 78651542372 scopus 로고    scopus 로고
    • A weighted principal component analysis and its application to gene expression data
    • 17 Jul, IEEE computer Society Digital Library. IEEE Computer Society
    • J. Costa, H. Alonso, L. Roque, A weighted principal component analysis and its application to gene expression data, IEEE/ACM Trans. on computational biology and bioinformatics, 17 Jul. 2009. IEEE computer Society Digital Library. IEEE Computer Society.
    • (2009) IEEE/ACM Trans. on computational biology and bioinformatics
    • Costa, J.1    Alonso, H.2    Roque, L.3
  • 8
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • D. Nguyen, D. Rocker: Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics, 18, 12, 1625-1632, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.12 , pp. 1625-1632
    • Nguyen, D.1    Rocker, D.2
  • 9
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cix regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • J. Gui, H. Li: Penalized Cix regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics, 21, 3001-3008, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill: Gene selection for cancer classification using support vector machines. Machine Learning, 46, 1-3, 389-422, 2002
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 11
    • 33947324308 scopus 로고    scopus 로고
    • Improving the performance of SVM-RFE to select genes in microarray data
    • Y. Ding, D. Wilkins: Improving the performance of SVM-RFE to select genes in microarray data. BMC Bioinformatics, 7(Suppl 2), 1-8, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL 2 , pp. 1-8
    • Ding, Y.1    Wilkins, D.2
  • 12
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • S. Shevade, S. Keerthi: A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19, 17, 2246- 2253, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S.1    Keerthi, S.2
  • 13
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with bayesian regularization
    • G. Cawley, N. Talbot: Gene selection in cancer classification using sparse logistic regression with bayesian regularization. Bioinformatics, 22, 2348- 2355, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2348-2355
    • Cawley, G.1    Talbot, N.2
  • 14
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • L. Ein-Dor, I. Kela, G. Getz, D. Givol, E. Domany: Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21, 171-178, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 15
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high-dimensional spaces
    • A. kalousis, J. Prados, M. Hilario: Stability of feature selection algorithms: a study on high-dimensional spaces. Knowledge and information systems, 12, 95-116, 2007.
    • (2007) Knowledge and information systems , vol.12 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 18
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou, T. Hastie: Regularization and variable selection via the elastic net. J. R. Statist. Soc. B: Statist. Methodol. 67, 301-320, 2005.
    • (2005) J. R. Statist. Soc. B: Statist. Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 19
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou: The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101, 1418-1429, 2006.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 20
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • H. Zou, H. Zhang: On the adaptive elastic-net with a diverging number of parameters. The Annals of statistics, 37, 4, 1733-1751, 2009.
    • (2009) The Annals of statistics , vol.37 , Issue.4 , pp. 1733-1751
    • Zou, H.1    Zhang, H.2
  • 21
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan, Y. Lin: Model selection and estimation in regression with grouped variables. JRSSB, 68, 49-67, 2006.
    • (2006) JRSSB , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 22
    • 37849035696 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • L. Meier, S. Geer, P. Buhlmann: The group lasso for logistic regression. JRSSB, 70, 53-71, 2008.
    • (2008) JRSSB , vol.70 , pp. 53-71
    • Meier, L.1    Geer, S.2    Buhlmann, P.3
  • 23
    • 54449086895 scopus 로고    scopus 로고
    • Higher criticism thresholding: Optimal feature selection when useful features are rare and weak
    • D. Donoho, J. Jin: Higher criticism thresholding: optimal feature selection when useful features are rare and weak. Proc. Natl. Acad. Sci. USA, 105, 14790-14795, 2008.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 14790-14795
    • Donoho, D.1    Jin, J.2
  • 24
    • 67049095607 scopus 로고    scopus 로고
    • Impossibility of successful classification when useful features are rare and weak
    • J. Jin: Impossibility of successful classification when useful features are rare and weak. Proc. Natl. Acad. Sci. USA, 106, 8859-8864, 2009.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 8859-8864
    • Jin, J.1
  • 25
    • 70350572773 scopus 로고    scopus 로고
    • Interval based fuzzy systems for identification of important genes from microarray gene expression data: Application to carcinogenic development
    • online available, Jul
    • R. De, A. Ghosh: Interval based fuzzy systems for identification of important genes from microarray gene expression data: application to carcinogenic development. Journal of Biomedical Informatics, online available, Jul.2009.
    • (2009) Journal of Biomedical Informatics
    • De, R.1    Ghosh, A.2
  • 26
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Y. Yang, J. Pedersen: A comparative study on feature selection in text categorization. Proc. of the 14th ICML, 412-420, 1997.
    • (1997) Proc. of the 14th ICML , pp. 412-420
    • Yang, Y.1    Pedersen, J.2
  • 27
    • 36849093470 scopus 로고    scopus 로고
    • Feature selection methods for text classification
    • San Jose, CA, USA
    • A. Dasgupta, P. Drineas, B. Harb: Feature selection methods for text classification. Proc. of KDD, San Jose, CA, USA, 2007.
    • (2007) Proc. of KDD
    • Dasgupta, A.1    Drineas, P.2    Harb, B.3
  • 28
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • T. Jirapech-Umpai, S. Aitken: Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics, 6, 148:1-11, 2005.
    • (2005) BMC Bioinformatics , vol.6-148 , pp. 1-11
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 30
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. Golub et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1
  • 31
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarray applied to the ionizing radiation response
    • V. Tusher, R. Tibshirani, G. Chu: Significance analysis of microarray applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA, 98, 9, 5116-5121, 2001.
    • (2001) Proc. Natl. Acad. Sci. USA, 98 , vol.9 , pp. 5116-5121
    • Tusher, V.1    Tibshirani, R.2    Chu, G.3
  • 32
    • 65449150247 scopus 로고    scopus 로고
    • Stable feature selection via dense feature groups
    • Las Vegas, Nevada, USA
    • L. Yu, C. Ding, S. Loscalzo: Stable feature selection via dense feature groups. Proc. of SIG KDD, Las Vegas, Nevada, USA, 803-811, 2008.
    • (2008) Proc. of SIG KDD , pp. 803-811
    • Yu, L.1    Ding, C.2    Loscalzo, S.3
  • 33
    • 70350686854 scopus 로고    scopus 로고
    • Consensus group stable feature selection
    • Paris, France
    • S. Loscalzo, L. Yu, C. Ding: Consensus group stable feature selection. Proc. of SIG KDD, Paris, France, 567-575, 2009.
    • (2009) Proc. of SIG KDD , pp. 567-575
    • Loscalzo, S.1    Yu, L.2    Ding, C.3
  • 34
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, A. Levine: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96, 6745-6750, 1999.
    • (1999) Proc. Natl. Acad. Sci. USA, 96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 35
    • 0035949684 scopus 로고    scopus 로고
    • Predicting the clinical status of human breast cancer by using gene expression profiles
    • M. West et al.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA, 98, 20, 11462-11467, 2001.
    • (2001) Proc. Natl. Acad. Sci. USA, 98 , vol.20 , pp. 11462-11467
    • West, M.1
  • 36
    • 0034570871 scopus 로고    scopus 로고
    • Correspondence analysis of genes and tissue types and finding genetic links from microarray data
    • H. Kishino, P. Waddell: Correspondence analysis of genes and tissue types and finding genetic links from microarray data. Genome information, 11, 83-95, 2000.
    • (2000) Genome information , vol.11 , pp. 83-95
    • Kishino, H.1    Waddell, P.2
  • 37
    • 65449166184 scopus 로고    scopus 로고
    • On sparse Fisher discriminant method for microarray data analysis
    • E. Feng, M. Ng:On sparse Fisher discriminant method for microarray data analysis. Bioinformation, 2(5), 230-234, 2007.
    • (2007) Bioinformation , vol.2 , Issue.5 , pp. 230-234
    • Feng, E.1    Ng, M.2
  • 38
    • 0025271588 scopus 로고
    • Expression of desmin gene in skeletal and smooth muscle by in situ hybridization using a human desmin gene probe
    • C. Bolmont, A. Lilienbaum, D. Paulin, J. Grimaud: Expression of desmin gene in skeletal and smooth muscle by in situ hybridization using a human desmin gene probe. Journal of Submicrosc Cytol Pathol., 22(1), 117-122, 1990.
    • (1990) Journal of Submicrosc Cytol Pathol. , vol.22 , Issue.1 , pp. 117-122
    • Bolmont, C.1    Lilienbaum, A.2    Paulin, D.3    Grimaud, J.4
  • 39
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithms for classifying gene expression data
    • Y. Li, C. Campbell, M. Tipping: Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics, 18, 1332-1339, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 40
    • 65349120262 scopus 로고    scopus 로고
    • The mRNA binding protiens HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis
    • L. Young, S. Sanduja, K. Bemis-Standoli, E. Pena, R. Price, D. Dixon: The mRNA binding protiens HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology, 136(5), 1669-1679, 2009.
    • (2009) Gastroenterology , vol.136 , Issue.5 , pp. 1669-1679
    • Young, L.1    Sanduja, S.2    Bemis-Standoli, K.3    Pena, E.4    Price, R.5    Dixon, D.6
  • 45


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.