메뉴 건너뛰기




Volumn 105, Issue 39, 2008, Pages 14790-14795

Higher criticism thresholding: Optimal feature selection when useful features are rare and weak

Author keywords

False discovery rate; Linear classification; Rare weak feature models; Threshold selection

Indexed keywords

ARTICLE; HIGH THROUGHPUT SCREENING; LINEAR REGRESSION ANALYSIS; MATHEMATICAL MODEL; MAXIMUM ALLOWABLE CONCENTRATION; METHODOLOGY; MOLECULAR DYNAMICS; PRIORITY JOURNAL; EPIDEMIOLOGY; GENOMICS; INFORMATION PROCESSING; PROTEOMICS; STATISTICAL MODEL; STATISTICS;

EID: 54449086895     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.0807471105     Document Type: Article
Times cited : (154)

References (23)
  • 2
    • 33745156863 scopus 로고    scopus 로고
    • Some theory of Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations
    • Bickel P, Levina E (2004) Some theory of Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations. Bernoulli 10:989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.1    Levina, E.2
  • 3
    • 53849089038 scopus 로고    scopus 로고
    • High dimensional classification using features annealed independence rules
    • in press
    • Fan J, Fan Y (2008) High dimensional classification using features annealed independence rules. Ann Statist, in press.
    • (2008) Ann Statist
    • Fan, J.1    Fan, Y.2
  • 6
    • 23744499545 scopus 로고    scopus 로고
    • Some problems of hypothesis testing leading to infinitely divisible distribution
    • Ingster YI (1997) Some problems of hypothesis testing leading to infinitely divisible distribution. Math Methods Stat 6:47-69.
    • (1997) Math Methods Stat , vol.6 , pp. 47-69
    • Ingster, Y.I.1
  • 7
    • 23744475601 scopus 로고    scopus 로고
    • Higher criticism for detecting sparse heterogeneous mixtures
    • Donoho D, Jin J (2004) Higher criticism for detecting sparse heterogeneous mixtures. Ann Stat 32:962-994.
    • (2004) Ann Stat , vol.32 , pp. 962-994
    • Donoho, D.1    Jin, J.2
  • 8
    • 34547245613 scopus 로고    scopus 로고
    • Ph.D. thesis Department of Statistics, Stanford University, Stanford
    • Jin J (2003) Detecting and estimating sparse mixtures. Ph.D. thesis (Department of Statistics, Stanford University, Stanford).
    • (2003) Detecting and estimating sparse mixtures
    • Jin, J.1
  • 9
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567-6572.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 10
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub T, et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531-536.
    • (1999) Science , vol.286 , pp. 531-536
    • Golub, T.1
  • 11
    • 0035931947 scopus 로고    scopus 로고
    • Gene-expression profile in hereditary breast cancer
    • Hedenfalk I, et al. (2001) Gene-expression profile in hereditary breast cancer. N Engl J Med 344:539-548.
    • (2001) N Engl J Med , vol.344 , pp. 539-548
    • Hedenfalk, I.1
  • 12
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 57:289-300.
    • (1995) J R Stat Soc B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 13
  • 14
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • Abramovich F, Benjamini Y, Donoho D, Johnstone I (2006) Adapting to unknown sparsity by controlling the false discovery rate. Ann Stat 34:584-653.
    • (2006) Ann Stat , vol.34 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.3    Johnstone, I.4
  • 16
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • Dettling M (2004) BagBoosting for tumor classification with gene expression data. Bioinformatics 20:3583-3593.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 17
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U, et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745-6750.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 18
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D, et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 19
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling M, Bühlmann P (2003) Boosting for tumor classification with gene expression data. Bioinformatics 19:1061-1069.
    • (2003) Bioinformatics , vol.19 , pp. 1061-1069
    • Dettling, M.1    Bühlmann, P.2
  • 20
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 2:121-167.
    • (1998) Knowl Discov Data Min , vol.2 , pp. 121-167
    • Burges, C.1
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 24:5-32.
    • (2001) Mach Learn , vol.24 , pp. 5-32
    • Breiman, L.1
  • 22
    • 37849031233 scopus 로고    scopus 로고
    • Theoretical measures of relative performance of classifiers for high dimensional data with small sample sizes
    • Hall P, Pittelkow Y, Ghosh M (2008) Theoretical measures of relative performance of classifiers for high dimensional data with small sample sizes. J R Stat Soc B 70:158 -173.
    • (2008) J R Stat Soc B , vol.70 , pp. 158-173
    • Hall, P.1    Pittelkow, Y.2    Ghosh, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.