메뉴 건너뛰기




Volumn 8, Issue 4, 1999, Pages 779-799

Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks

Author keywords

Bayesian hierarchical models; Feedforward neural networks; Leapfrog algorithm; Markov chain Monte Carlo; Random walk Metropolis Hastings

Indexed keywords


EID: 8644257632     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1080/10618600.1999.10474849     Document Type: Article
Times cited : (29)

References (32)
  • 2
    • 0002662712 scopus 로고
    • On the Existence of Maximum Likelihood Estimates in Logistic Regression Models
    • Albert, A., and Anderson, J. A. (1984), “On the Existence of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika, 71, 1-10.
    • (1984) Biometrika , vol.71 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 3
    • 0029669017 scopus 로고    scopus 로고
    • Satellite Male Groups in Horseshoe Crabs, Limulus polyphemus
    • Brockmann, H. J. (1996), “Satellite Male Groups in Horseshoe Crabs, Limulus polyphemus,” Ethology, 102, 1-21.
    • (1996) Ethology , vol.102 , pp. 1-21
    • Brockmann, H.J.1
  • 4
    • 0024861871 scopus 로고
    • Approximations by Superpositions of a Sigmoidal Function
    • Cybenko, G. (1989), “Approximations by Superpositions of a Sigmoidal Function,” Mathematics of Control Signals, and Systems, 2, 303-314.
    • (1989) Mathematics of Control Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0039644192 scopus 로고
    • Bayesian Inference for Generalized Linear and Proportional Hazards Models via Gibbs Sampling
    • Dellaportas, P., and Smith, A. F. M. (1993), “Bayesian Inference for Generalized Linear and Proportional Hazards Models via Gibbs Sampling,” Applied Statistics, 42, 443-459.
    • (1993) Applied Statistics , vol.42 , pp. 443-459
    • Dellaportas, P.1    Smith, A.F.M.2
  • 7
    • 0010867289 scopus 로고
    • Stochastic Quantization Versus the Microcanonical Ensemble: Getting the Best of Both Worlds
    • Duane, S. (1985), “Stochastic Quantization Versus the Microcanonical Ensemble: Getting the Best of Both Worlds,” Nuclear Physics B, 257, 652-662.
    • (1985) Nuclear Physics B , vol.257 , pp. 652-662
    • Duane, S.1
  • 8
    • 0010923792 scopus 로고
    • The Theory of Hybrid Stochastic Algorithms
    • Duane, S., and Kogut, J. B. (1986), “The Theory of Hybrid Stochastic Algorithms,” Nuclear Physics B, 275, 398-420.
    • (1986) Nuclear Physics B , vol.275 , pp. 398-420
    • Duane, S.1    Kogut, J.B.2
  • 10
    • 0024866495 scopus 로고
    • On the Approximate Realization of Continuous Mappings by Neural Networks
    • Funahashi, K. (1989), “On the Approximate Realization of Continuous Mappings by Neural Networks,” Neural Networks, 2, 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 11
    • 0000324169 scopus 로고
    • Adaptive Rejection Sampling for Gibbs Sampling
    • Gilks, W. R., and Wild, P. (1992), “Adaptive Rejection Sampling for Gibbs Sampling,” Applied Statistics, 41, 337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 12
    • 0038312668 scopus 로고
    • Adaptive Rejection Metropolis Sampling within Gibbs Sampling
    • Gilks, W. R., Best, N., and Tan, K. K. C. (1995), “Adaptive Rejection Metropolis Sampling within Gibbs Sampling,” Applied Statistics, 44, 455-472.
    • (1995) Applied Statistics , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.2    Tan, K.K.C.3
  • 14
    • 0030980644 scopus 로고    scopus 로고
    • Large Bayesian Hierarchical Analysis of Multivariate Survival Data
    • Gustafson, P. (1997), “Large Bayesian Hierarchical Analysis of Multivariate Survival Data,” Biometrika, 83, 230-242.
    • (1997) Biometrika , vol.83 , pp. 230-242
    • Gustafson, P.1
  • 15
    • 0024880831 scopus 로고
    • Multilayer Feedforward Networks are Universal Approximators
    • Homik, K., Stinchcombe, M., and White, H. (1989), “Multilayer Feedforward Networks are Universal Approximators,” Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Homik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 0009349032 scopus 로고
    • A Generalized Guided Monte Carlo Algorithm
    • Horowitz, A. M. (1991), “A Generalized Guided Monte Carlo Algorithm,” Physics Letters B, 268, 247-252.
    • (1991) Physics Letters B , vol.268 , pp. 247-252
    • Horowitz, A.M.1
  • 18
    • 0003210186 scopus 로고
    • The Theory of Hybrid Stochastic Algorithms
    • P. H. Damgaard et al., New York: Plenum Press
    • Kennedy, A. D. (1990), “The Theory of Hybrid Stochastic Algorithms,” in Probabilistic Methods in Quantum Field Theory and Quantum Gravity, eds. P. H. Damgaard et al., New York: Plenum Press, pp. 209-223.
    • (1990) Probabilistic Methods in Quantum Field Theory and Quantum Gravity , pp. 209-223
    • Kennedy, A.D.1
  • 19
    • 0001256114 scopus 로고
    • Generalized Linear Models With Unknown Link Functions
    • Mallick, B. K., and Gelfand, A. E. (1994), “Generalized Linear Models With Unknown Link Functions,” Biometrika, 81, 237-245.
    • (1994) Biometrika , vol.81 , pp. 237-245
    • Mallick, B.K.1    Gelfand, A.E.2
  • 21
    • 0002704818 scopus 로고
    • A Practical Bayesian Framework for Backpropagation Networks
    • MacKay, D. J. C. (1992), “A Practical Bayesian Framework for Backpropagation Networks,” Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 22
    • 0029022967 scopus 로고
    • Exact Logistic Regression: Theory and Examples
    • Mehta, C. R., and Patel, N. R. (1995), “Exact Logistic Regression: Theory and Examples,” Statistics in Medicine, 14, 2143-2160.
    • (1995) Statistics in Medicine , vol.14 , pp. 2143-2160
    • Mehta, C.R.1    Patel, N.R.2
  • 23
    • 0000088731 scopus 로고
    • An Improved Acceptance Procedure for the Hybrid Monte Carlo Algorithm
    • Neal, R. M. (1994), “An Improved Acceptance Procedure for the Hybrid Monte Carlo Algorithm,” Journal of Computational Physics, 111, 194-203
    • (1994) Journal of Computational Physics , vol.111 , pp. 194-203
    • Neal, R.M.1
  • 26
    • 0000297493 scopus 로고    scopus 로고
    • Approximate Bayes Factors and Accounting for Model Uncertainty in Generalized Linear Models
    • Raftery, A. E. (1996) “Approximate Bayes Factors and Accounting for Model Uncertainty in Generalized Linear Models,” Biometrika, 83, 251-266.
    • (1996) Biometrika , vol.83 , pp. 251-266
    • Raftery, A.E.1
  • 29
    • 0001431651 scopus 로고
    • A Note on A. Albert and J. A. Andersons Conditions for the Existence of Maximum Likelihood Estimates in Logistic Regression Models,”
    • Santner, T. J., and Duffy, D. E. (1986), “A Note on A. Albert and J. A. Anderson’s Conditions for the Existence of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika, 73, 755-758.
    • (1986) Biometrika , vol.73 , pp. 755-758
    • Santner, T.J.1    Duffy, D.E.2
  • 31
    • 0026897370 scopus 로고
    • Uniqueness of the Weights for Minimal Feedforward Nets With a Given Input-Output Map
    • Sussmann, H. J. (1992), “Uniqueness of the Weights for Minimal Feedforward Nets With a Given Input-Output Map,” Neural Networks, 5, 589-593.
    • (1992) Neural Networks , vol.5 , pp. 589-593
    • Sussmann, H.J.1
  • 32
    • 84910906566 scopus 로고
    • Generalized Linear Models With Random Effects: A Gibbs Sampling Approach
    • Zeger, S. L., and Karim, M. R. (1991), “Generalized Linear Models With Random Effects: A Gibbs Sampling Approach,” Journal of the American Statistical Association, 86, 79-86.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.