-
1
-
-
33646182727
-
Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control
-
Crosnier, C., D. Stamataki, and J. Lewis. 2006. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7:349-359.
-
(2006)
Nat. Rev. Genet.
, vol.7
, pp. 349-359
-
-
Crosnier, C.1
Stamataki, D.2
Lewis, J.3
-
2
-
-
34447281675
-
Molecular basis of epithelial barrier regulation: From basic mechanisms to clinical application
-
Turner, J. R. 2006. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am. J. Pathol. 169:1901-1909.
-
(2006)
Am. J. Pathol.
, vol.169
, pp. 1901-1909
-
-
Turner, J.R.1
-
3
-
-
44349132270
-
Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut
-
Artis, D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8:411-420.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 411-420
-
-
Artis, D.1
-
4
-
-
3242664636
-
Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
-
Rakoff-Nahoum, S., J. Paglino, F. Eslami-Varzaneh, S. Edberg, and R. Medzhitov. 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229-241.
-
(2004)
Cell.
, vol.118
, pp. 229-241
-
-
Rakoff-Nahoum, S.1
Paglino, J.2
Eslami-Varzaneh, F.3
Edberg, S.4
Medzhitov, R.5
-
5
-
-
34247235029
-
Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function
-
Cario, E., G. Gerken, and D. K. Podolsky. 2007. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132:1359-1374.
-
(2007)
Gastroenterology
, vol.132
, pp. 1359-1374
-
-
Cario, E.1
Gerken, G.2
Podolsky, D.K.3
-
6
-
-
38049153165
-
TAK1 is a central mediator of NOD2 signaling in epidermal cells
-
Kim, J.-Y., E. Omori, K. Matsumoto, G. Núñez, and J. Ninomiya-Tsuji. 2008. TAK1 is a central mediator of NOD2 signaling in epidermal cells. J. Biol. Chem. 283:137-144.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 137-144
-
-
Kim, J.-Y.1
Omori, E.2
Matsumoto, K.3
Núñez, G.4
Ninomiya-Tsuji, J.5
-
7
-
-
27544434183
-
Essential function for the kinase TAK1 in innate and adaptive immune responses
-
Sato, S., H. Sanjo, K. Takeda, J. Ninomiya-Tsuji, M. Yamamoto, T. Kawai, K. Matsumoto, O. Takeuchi, and S. Akira. 2005. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6:1087-1095.
-
(2005)
Nat. Immunol.
, vol.6
, pp. 1087-1095
-
-
Sato, S.1
Sanjo, H.2
Takeda, K.3
Ninomiya-Tsuji, J.4
Yamamoto, M.5
Kawai, T.6
Matsumoto, K.7
Takeuchi, O.8
Akira, S.9
-
8
-
-
0033580466
-
The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway
-
Ninomiya-Tsuji, J., K. Kishimoto, A. Hiyama, J. Inoue, Z. Cao, and K. Matsumoto. 1999. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252-256.
-
(1999)
Nature
, vol.398
, pp. 252-256
-
-
Ninomiya-Tsuji, J.1
Kishimoto, K.2
Hiyama, A.3
Inoue, J.4
Cao, Z.5
Matsumoto, K.6
-
10
-
-
49049095991
-
Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis
-
Kajino-Sakamoto, R., M. Inagaki, E. Lippert, S. Akira, S. Robine, K. Matsumoto, C. Jobin, and J. Ninomiya-Tsuji. 2008. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J. Immunol. 181:1143-1152.
-
(2008)
J. Immunol.
, vol.181
, pp. 1143-1152
-
-
Kajino-Sakamoto, R.1
Inagaki, M.2
Lippert, E.3
Akira, S.4
Robine, S.5
Matsumoto, K.6
Jobin, C.7
Ninomiya-Tsuji, J.8
-
11
-
-
33745851830
-
TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis
-
Omori, E., K. Matsumoto, H. Sanjo, S. Sato, S. Akira, R. C. Smart, and J. Ninomiya-Tsuji. 2006. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J. Biol. Chem. 281:19610-19617.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 19610-19617
-
-
Omori, E.1
Matsumoto, K.2
Sanjo, H.3
Sato, S.4
Akira, S.5
Smart, R.C.6
Ninomiya-Tsuji, J.7
-
12
-
-
0037142027
-
TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2
-
Pasparakis, M., G. Courtois, M. Hafner, M. Schmidt-Supprian, A. Nenci, A. Toksoy, M. Krampert, M. Goebeler, R. Gillitzer, A. Israel, et al. 2002. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417:861-866.
-
(2002)
Nature
, vol.417
, pp. 861-866
-
-
Pasparakis, M.1
Courtois, G.2
Hafner, M.3
Schmidt-Supprian, M.4
Nenci, A.5
Toksoy, A.6
Krampert, M.7
Goebeler, M.8
Gillitzer, R.9
Israel, A.10
-
13
-
-
62949219864
-
Biological therapies for inflammatory bowel diseases
-
Rutgeerts, P., S. Vermeire, and G. Van Assche. 2009. Biological therapies for inflammatory bowel diseases. Gastroenterology 136:1182-1197.
-
(2009)
Gastroenterology
, vol.136
, pp. 1182-1197
-
-
Rutgeerts, P.1
Vermeire, S.2
Van Assche, G.3
-
14
-
-
33746857795
-
Essential role of TAK1 in thymocyte development and activation
-
Liu, H. H., M. Xie, M. D. Schneider, and Z. J. Chen. 2006. Essential role of TAK1 in thymocyte development and activation. Proc. Natl. Acad. Sci. USA 103:11677-11682.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 11677-11682
-
-
Liu, H.H.1
Xie, M.2
Schneider, M.D.3
Chen, Z.J.4
-
15
-
-
33746111852
-
The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function
-
Wan, Y. Y., H. Chi, M. Xie, M. D. Schneider, and R. A. Flavell. 2006. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat. Immunol. 7:851-858.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 851-858
-
-
Wan, Y.Y.1
Chi, H.2
Xie, M.3
Schneider, M.D.4
Flavell, R.A.5
-
16
-
-
27744577296
-
TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo
-
Shim, J. H., C. Xiao, A. E. Paschal, S. T. Bailey, P. Rao, M. S. Hayden, K. Y. Lee, C. Bussey, M. Steckel, N. Tanaka, et al. 2005. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19:2668-2681.
-
(2005)
Genes Dev.
, vol.19
, pp. 2668-2681
-
-
Shim, J.H.1
Xiao, C.2
Paschal, A.E.3
Bailey, S.T.4
Rao, P.5
Hayden, M.S.6
Lee, K.Y.7
Bussey, C.8
Steckel, M.9
Tanaka, N.10
-
17
-
-
85047692516
-
Signalling pathways of the TNF superfamily: A doubleedged sword
-
Aggarwal, B. B. 2003. Signalling pathways of the TNF superfamily: a doubleedged sword. Nat. Rev. Immunol. 3:745-756.
-
(2003)
Nat. Rev. Immunol.
, vol.3
, pp. 745-756
-
-
Aggarwal, B.B.1
-
18
-
-
34249820757
-
TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death
-
Kim, Y. S., M. J. Morgan, S. Choksi, and Z. G. Liu. 2007. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26:675-687.
-
(2007)
Mol. Cell.
, vol.26
, pp. 675-687
-
-
Kim, Y.S.1
Morgan, M.J.2
Choksi, S.3
Liu, Z.G.4
-
19
-
-
69349088255
-
Riboflavin kinase couples TNF receptor 1 to NADPH oxidase
-
Yazdanpanah, B., K. Wiegmann, V. Tchikov, O. Krut, C. Pongratz, M. Schramm, A. Kleinridders, T. Wunderlich, H. Kashkar, O. Utermöhlen, et al. 2009. Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460:1159-1163.
-
(2009)
Nature
, vol.460
, pp. 1159-1163
-
-
Yazdanpanah, B.1
Wiegmann, K.2
Tchikov, V.3
Krut, O.4
Pongratz, C.5
Schramm, M.6
Kleinridders, A.7
Wunderlich, T.8
Kashkar, H.9
Utermöhlen, O.10
-
20
-
-
54449085568
-
TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity
-
Omori, E., S. Morioka, K. Matsumoto, and J. Ninomiya-Tsuji. 2008. TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J. Biol. Chem. 283:26161-26168.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 26161-26168
-
-
Omori, E.1
Morioka, S.2
Matsumoto, K.3
Ninomiya-Tsuji, J.4
-
21
-
-
0027297663
-
Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection
-
Pfeffer, K., T. Matsuyama, T. M. Kündig, A. Wakeham, K. Kishihara, A. Shahinian, K. Wiegmann, P. S. Ohashi, M. Krönke, and T. W. Mak. 1993. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457-467.
-
(1993)
Cell.
, vol.73
, pp. 457-467
-
-
Pfeffer, K.1
Matsuyama, T.2
Kündig, T.M.3
Wakeham, A.4
Kishihara, K.5
Shahinian, A.6
Wiegmann, K.7
Ohashi, P.S.8
Krönke, M.9
Mak, T.W.10
-
22
-
-
0037031856
-
Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine
-
Madison, B. B., L. Dunbar, X. T. Qiao, K. Braunstein, E. Braunstein, and D. L. Gumucio. 2002. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277:33275-33283.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 33275-33283
-
-
Madison, B.B.1
Dunbar, L.2
Qiao, X.T.3
Braunstein, K.4
Braunstein, E.5
Gumucio, D.L.6
-
23
-
-
4043059169
-
Tissue-specific and inducible Cre-mediated recombination in the gut epithelium
-
El Marjou, F., K. P. Janssen, B. H. Chang, M. Li, V. Hindie, L. Chan, D. Louvard, P. Chambon, D. Metzger, and S. Robine. 2004. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39:186-193.
-
(2004)
Genesis
, vol.39
, pp. 186-193
-
-
El Marjou, F.1
Janssen, K.P.2
Chang, B.H.3
Li, M.4
Hindie, V.5
Chan, L.6
Louvard, D.7
Chambon, P.8
Metzger, D.9
Robine, S.10
-
24
-
-
67349205025
-
TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP
-
Morioka, S., E. Omori, T. Kajino, R. Kajino-Sakamoto, K. Matsumoto, and J. Ninomiya-Tsuji. 2009. TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. Oncogene 28:2257-2265.
-
(2009)
Oncogene
, vol.28
, pp. 2257-2265
-
-
Morioka, S.1
Omori, E.2
Kajino, T.3
Kajino-Sakamoto, R.4
Matsumoto, K.5
Ninomiya-Tsuji, J.6
-
25
-
-
0032412057
-
Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice
-
Sellon, R. K., S. Tonkonogy, M. Schultz, L. A. Dieleman, W. Grenther, E. Balish, D. M. Rennick, and R. B. Sartor. 1998. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66:5224-5231.
-
(1998)
Infect. Immun.
, vol.66
, pp. 5224-5231
-
-
Sellon, R.K.1
Tonkonogy, S.2
Schultz, M.3
Dieleman, L.A.4
Grenther, W.5
Balish, E.6
Rennick, D.M.7
Sartor, R.B.8
-
26
-
-
0033634977
-
TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway
-
Takaesu, G., S. Kishida, A. Hiyama, K. Yamaguchi, H. Shibuya, K. Irie, J. Ninomiya-Tsuji, and K. Matsumoto. 2000. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5:649-658.
-
(2000)
Mol. Cell.
, vol.5
, pp. 649-658
-
-
Takaesu, G.1
Kishida, S.2
Hiyama, A.3
Yamaguchi, K.4
Shibuya, H.5
Irie, K.6
Ninomiya-Tsuji, J.7
Matsumoto, K.8
-
27
-
-
33847009038
-
Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone
-
Moeser, A. J., P. K. Nighot, K. J. Engelke, R. Ueno, and A. T. Blikslager. 2007. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am. J. Physiol. Gastrointest. Liver Physiol. 292: G647-G656.
-
(2007)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.292
-
-
Moeser, A.J.1
Nighot, P.K.2
Engelke, K.J.3
Ueno, R.4
Blikslager, A.T.5
-
28
-
-
33748052967
-
Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species
-
Kobayashi, M., and M. Yamamoto. 2006. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46:113-140.
-
(2006)
Adv. Enzyme Regul.
, vol.46
, pp. 113-140
-
-
Kobayashi, M.1
Yamamoto, M.2
-
29
-
-
1942520367
-
Nrf2 signaling in coordinated activation of antioxidant gene expression
-
Jaiswal, A. K. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36:1199-1207.
-
(2004)
Free Radic. Biol. Med.
, vol.36
, pp. 1199-1207
-
-
Jaiswal, A.K.1
-
30
-
-
59849113546
-
Molecular mechanisms of Nrf2-mediated antioxidant response
-
Li, W., and A. N. Kong. 2009. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48:91-104.
-
(2009)
Mol. Carcinog
, vol.48
, pp. 91-104
-
-
Li, W.1
Kong, A.N.2
-
31
-
-
0034629146
-
TAK1 mitogenactivated protein kinase kinase kinase is activated by autophosphorylation within its activation loop
-
Kishimoto, K., K. Matsumoto, and J. Ninomiya-Tsuji. 2000. TAK1 mitogenactivated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem. 275:7359-7364.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 7359-7364
-
-
Kishimoto, K.1
Matsumoto, K.2
Ninomiya-Tsuji, J.3
-
32
-
-
33847050801
-
Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway
-
Kensler, T. W., N. Wakabayashi, and S. Biswal. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47:89-116.
-
(2007)
Annu. Rev. Pharmacol. Toxicol.
, vol.47
, pp. 89-116
-
-
Kensler, T.W.1
Wakabayashi, N.2
Biswal, S.3
-
33
-
-
1542316379
-
Bacterial contributions to mammalian gut development
-
Hooper, L. V. 2004. Bacterial contributions to mammalian gut development. Trends Microbiol. 12:129-134.
-
(2004)
Trends Microbiol.
, vol.12
, pp. 129-134
-
-
Hooper, L.V.1
-
34
-
-
33846264538
-
Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis
-
Khor, T. O., M. T. Huang, K. H. Kwon, J. Y. Chan, B. S. Reddy, and A. N. Kong. 2006. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 66:11580-11584.
-
(2006)
Cancer Res.
, vol.66
, pp. 11580-11584
-
-
Khor, T.O.1
Huang, M.T.2
Kwon, K.H.3
Chan, J.Y.4
Reddy, B.S.5
Kong, A.N.6
-
35
-
-
27844572844
-
JunD activates transcription of the human ferritin H gene through an antioxidant response element during oxidative stress
-
Tsuji, Y. 2005. JunD activates transcription of the human ferritin H gene through an antioxidant response element during oxidative stress. Oncogene 24:7567-7578.
-
(2005)
Oncogene
, vol.24
, pp. 7567-7578
-
-
Tsuji, Y.1
-
36
-
-
4544346656
-
JunD reduces tumor angiogenesis by protecting cells from oxidative stress
-
Gerald, D., E. Berra, Y. M. Frapart, D. A. Chan, A. J. Giaccia, D. Mansuy, J. Pouysségur, M. Yaniv, and F. Mechta-Grigoriou. 2004. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781-794.
-
(2004)
Cell.
, vol.118
, pp. 781-794
-
-
Gerald, D.1
Berra, E.2
Frapart, Y.M.3
Chan, D.A.4
Giaccia, A.J.5
Mansuy, D.6
Pouysségur, J.7
Yaniv, M.8
Mechta-Grigoriou, F.9
-
37
-
-
0037144436
-
Role of AP-1 in the coordinate induction of rat glutamatecysteine ligase and glutathione synthetase by tert-butylhydroquinone
-
Yang, H., Y. Zeng, T. D. Lee, Y. Yang, X. Ou, L. Chen, M. Haque, R. Rippe, and S. C. Lu. 2002. Role of AP-1 in the coordinate induction of rat glutamatecysteine ligase and glutathione synthetase by tert-butylhydroquinone. J. Biol. Chem. 277:35232-35239.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 35232-35239
-
-
Yang, H.1
Zeng, Y.2
Lee, T.D.3
Yang, Y.4
Ou, X.5
Chen, L.6
Haque, M.7
Rippe, R.8
Lu, S.C.9
-
38
-
-
0036139794
-
AP-1: Linking hydrogen peroxide and oxidative stress to the control of cell proliferation and death
-
Karin, M., and E. Shaulian. 2001. AP-1: linking hydrogen peroxide and oxidative stress to the control of cell proliferation and death. IUBMB Life 52:17-24.
-
(2001)
IUBMB Life
, vol.52
, pp. 17-24
-
-
Karin, M.1
Shaulian, E.2
-
39
-
-
38849199203
-
Shared principles in NF-kappaB signaling
-
Hayden, M. S., and S. Ghosh. 2008. Shared principles in NF-kappaB signaling. Cell 132:344-362.
-
(2008)
Cell.
, vol.132
, pp. 344-362
-
-
Hayden, M.S.1
Ghosh, S.2
-
40
-
-
8344260568
-
Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species
-
Pham, C. G., C. Bubici, F. Zazzeroni, S. Papa, J. Jones, K. Alvarez, S. Jayawardena, E. De Smaele, R. Cong, C. Beaumont, et al. 2004. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119:529-542.
-
(2004)
Cell.
, vol.119
, pp. 529-542
-
-
Pham, C.G.1
Bubici, C.2
Zazzeroni, F.3
Papa, S.4
Jones, J.5
Alvarez, K.6
Jayawardena, S.7
De Smaele, E.8
Cong, R.9
Beaumont, C.10
-
41
-
-
14844327760
-
Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases
-
Kamata, H., S. Honda, S. Maeda, L. Chang, H. Hirata, and M. Karin. 2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649-661.
-
(2005)
Cell.
, vol.120
, pp. 649-661
-
-
Kamata, H.1
Honda, S.2
Maeda, S.3
Chang, L.4
Hirata, H.5
Karin, M.6
|