메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Analysis of variance of cross-validation estimators of the generalization error

Author keywords

Cross validation; Generalization error; Moment approximation; Prediction; Variance estimation

Indexed keywords

APPROXIMATION THEORY; DATA REDUCTION; DATABASE SYSTEMS; INFORMATION ANALYSIS; PROBLEM SOLVING;

EID: 23244454640     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (89)

References (26)
  • 1
    • 84925604888 scopus 로고    scopus 로고
    • No unbiased estimator of the variance of k-fold cross validation
    • Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross validation. Journal of Machine Learning Research, 5: 1089-1105, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 3
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • L. Breiman. Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24: 2350-2383, 1996.
    • (1996) The Annals of Statistics , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 5
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10: 1895-1923, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 6
    • 84950461478 scopus 로고
    • Estimating the error rate of a predication rule: Improvement on cross-validation
    • B. Efron. Estimating the error rate of a predication rule: Improvement on cross-validation. Journal of the American Statistical Association, 78: 316-331, 1983.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 8
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • B. Efron. The Estimation of Prediction Error: Covariance Penalties and Cross-Validation. Journal of the American Statistical Association, 99: 619-632, 2004.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 619-632
    • Efron, B.1
  • 10
    • 23244459615 scopus 로고    scopus 로고
    • Calculation methods for nonlinear dynamic least absolute deviations estimator
    • K. Hitomi and M. Kagihara. Calculation methods for nonlinear dynamic least absolute deviations estimator. Journal of the Japan. Statist. Society, 31: 39-51, 2001.
    • (2001) Journal of the Japan. Statist. Society , vol.31 , pp. 39-51
    • Hitomi, K.1    Kagihara, M.2
  • 12
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • G. M. James. Variance and bias for general loss functions. Machine Learning, 51: 115-135, 2003.
    • (2003) Machine Learning , vol.51 , pp. 115-135
    • James, G.M.1
  • 13
    • 85156223398 scopus 로고    scopus 로고
    • A bound on the error of cross validation with consequences for the training-test split
    • M. Kearns. A bound on the error of cross validation with consequences for the training-test split. In Advances in Neural Information Processing Systems, 8: 183-189, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 183-189
    • Kearns, M.1
  • 14
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross validation
    • M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross validation. Neural Computation, 11: 1427-1453, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 15
    • 2442522423 scopus 로고    scopus 로고
    • Approximation of the expectation of a function of the sample mean
    • R. A. Khan. Approximation of the expectation of a function of the sample mean. Statistics, 38: 117-122, 2004.
    • (2004) Statistics , vol.38 , pp. 117-122
    • Khan, R.A.1
  • 16
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In The International Joint Conference on Artificial Intelligence, 1137-1143, 1995.
    • (1995) The International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 18
    • 1442307390 scopus 로고
    • An asymptotic expansion for the variance of the errors of misclassification of the linear discriminant function
    • G. J. McLachlan. An asymptotic expansion for the variance of the errors of misclassification of the linear discriminant function. Australian Journal of Statistics, 14: 68-72, 1972.
    • (1972) Australian Journal of Statistics , vol.14 , pp. 68-72
    • McLachlan, G.J.1
  • 19
    • 84990495134 scopus 로고
    • An asymptotic expansion of the expectation of the estimated error rate in discriminant analysis
    • G. J. Mclachlan. An asymptotic expansion of the expectation of the estimated error rate in discriminant analysis. Australian Journal of Statistics, 15: 210-214, 1974.
    • (1974) Australian Journal of Statistics , vol.15 , pp. 210-214
    • Mclachlan, G.J.1
  • 20
    • 0015956459 scopus 로고
    • The asymptotic distributions of the conditional error rate and risk in discriminant analysis
    • G. J. McLachlan. The asymptotic distributions of the conditional error rate and risk in discriminant analysis. Biometrika, 61: 131-135, 1974.
    • (1974) Biometrika , vol.61 , pp. 131-135
    • McLachlan, G.J.1
  • 21
    • 85042336383 scopus 로고
    • The bias of the apparent error rate in discriminant analysis
    • G. J. McLachlan. The bias of the apparent error rate in discriminant analysis. Biometrika, 63: 239-244, 1976.
    • (1976) Biometrika , vol.63 , pp. 239-244
    • McLachlan, G.J.1
  • 22
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • C. Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning, 52: 239-281, 2003.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 24
    • 0027067290 scopus 로고
    • Variability and bias in experimentally measured classifier error rates
    • J. Piper. Variability and bias in experimentally measured classifier error rates. Pattern Recognition Letters, 13: 685-692, 1992.
    • (1992) Pattern Recognition Letters , vol.13 , pp. 685-692
    • Piper, J.1
  • 25
    • 0042784763 scopus 로고    scopus 로고
    • Between stability and higher order asymptotics
    • E. Ronchetti and L. Ventura. Between stability and higher order asymptotics .Statistics and Computing, 11: 67-73, 2001.
    • (2001) Statistics and Computing , vol.11 , pp. 67-73
    • Ronchetti, E.1    Ventura, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.