메뉴 건너뛰기




Volumn 35, Issue 6, 2007, Pages 2450-2473

Consistency of cross validation for comparing regression procedures

Author keywords

Consistency; Cross validation; Model selection

Indexed keywords


EID: 39649100346     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053607000000514     Document Type: Article
Times cited : (131)

References (35)
  • 1
    • 50849104032 scopus 로고    scopus 로고
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
  • 2
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • MR0343481
    • ALLEN, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16 125-127. MR0343481
    • (1974) Technometrics , vol.16 , pp. 125-127
    • ALLEN, D.M.1
  • 3
    • 50849104866 scopus 로고    scopus 로고
    • BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A. and STONE, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA. MR0726392
    • BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A. and STONE, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA. MR0726392
  • 4
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross-validation, u-fold cross-validation and the repeated learning-testing methods
    • MR1040644
    • BURMAN, P. (1989). A comparative study of ordinary cross-validation, u-fold cross-validation and the repeated learning-testing methods. Biometrika 76 503-514. MR1040644
    • (1989) Biometrika , vol.76 , pp. 503-514
    • BURMAN, P.1
  • 5
    • 0009935784 scopus 로고
    • Estimation of optimal transformations using u-fold cross validation and repeated learning-testing methods
    • MR1178041
    • BURMAN, P. (1990). Estimation of optimal transformations using u-fold cross validation and repeated learning-testing methods. Sankhyā Ser A 52 314-345. MR1178041
    • (1990) Sankhyā Ser A , vol.52 , pp. 314-345
    • BURMAN, P.1
  • 6
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • MR0516581
    • CRAVEN, P. and WAHBA, G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31 377-403. MR0516581
    • (1979) Numer. Math , vol.31 , pp. 377-403
    • CRAVEN, P.1    WAHBA, G.2
  • 7
    • 0032334093 scopus 로고    scopus 로고
    • Minimax estimation via wavelet shrinkage
    • MR 1635414
    • DONOHO, D. L. and JOHNSTONE, I. M. (1998). Minimax estimation via wavelet shrinkage. Ann. Statist. 26 879-921. MR 1635414
    • (1998) Ann. Statist , vol.26 , pp. 879-921
    • DONOHO, D.L.1    JOHNSTONE, I.M.2
  • 8
    • 50849106485 scopus 로고    scopus 로고
    • FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall, London. MR1383587
    • FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall, London. MR1383587
  • 9
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • GEISSER, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc. 70 320-328.
    • (1975) J. Amer. Statist. Assoc , vol.70 , pp. 320-328
    • GEISSER, S.1
  • 11
    • 0000606681 scopus 로고
    • Empirical functional and efficient smoothing parameter selection (with discussion)
    • MR 1160479
    • HALL, P. and JOHNSTONE, I. (1992). Empirical functional and efficient smoothing parameter selection (with discussion). J. Roy. Statist. Soc. Ser. B 54 475-530. MR 1160479
    • (1992) J. Roy. Statist. Soc. Ser. B , vol.54 , pp. 475-530
    • HALL, P.1    JOHNSTONE, I.2
  • 12
    • 84909719647 scopus 로고
    • How far are automatically chosen regression smoothing parameters from their optimum? (with discussion)
    • MR0941001
    • HARDLE, W., HALL, P. and MARRON, J. S. (1988). How far are automatically chosen regression smoothing parameters from their optimum? (with discussion). J. Amer. Statist. Assoc. 83 86-101. MR0941001
    • (1988) J. Amer. Statist. Assoc , vol.83 , pp. 86-101
    • HARDLE, W.1    HALL, P.2    MARRON, J.S.3
  • 14
    • 0142064173 scopus 로고
    • Consistency for cross-validated nearest neighbor estimates in nonparametric regression
    • MR0733510
    • LI, K.-C. (1984). Consistency for cross-validated nearest neighbor estimates in nonparametric regression. Ann. Statist. 12 230-240. MR0733510
    • (1984) Ann. Statist , vol.12 , pp. 230-240
    • LI, K.-C.1
  • 15
    • 0001462696 scopus 로고
    • L, cross-validation and generalized crossvalidation: Discrete index set
    • MR0902239
    • L, cross-validation and generalized crossvalidation: Discrete index set. Ann. Statist. 15 958-975. MR0902239
    • (1987) Ann. Statist , vol.15 , pp. 958-975
    • LI, K.-C.1
  • 16
    • 0007259908 scopus 로고    scopus 로고
    • Topics in nonparametric statistics
    • Lectures on Probability Theory and Statistics Saint-Flour, Springer, Berlin. MR 1775640
    • NEMIROVSKI, A. (2000). Topics in nonparametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1998). Lecture Notes in Math. 1738 85-277. Springer, Berlin. MR 1775640
    • (1998) Lecture Notes in Math , vol.1738 , pp. 85-277
    • NEMIROVSKI, A.1
  • 17
    • 0009955854 scopus 로고    scopus 로고
    • Nonparametric regression with correlated errors
    • MR1861070
    • OPSOMER, J., WANG, Y. and YANG, Y. (2001). Nonparametric regression with correlated errors. Statist. Sci. 16 134-153. MR1861070
    • (2001) Statist. Sci , vol.16 , pp. 134-153
    • OPSOMER, J.1    WANG, Y.2    YANG, Y.3
  • 18
    • 50849143239 scopus 로고    scopus 로고
    • POLLARD, D. (1984). Convergence of Stochastic Processes. Springer, New York. MR0762984
    • POLLARD, D. (1984). Convergence of Stochastic Processes. Springer, New York. MR0762984
  • 19
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • MR1224373
    • SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486-494. MR1224373
    • (1993) J. Amer. Statist. Assoc , vol.88 , pp. 486-494
    • SHAO, J.1
  • 20
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection (with discussion)
    • MR1466682
    • SHAO, J. (1997). An asymptotic theory for linear model selection (with discussion). Statist. Sinica 7 221-264. MR1466682
    • (1997) Statist. Sinica , vol.7 , pp. 221-264
    • SHAO, J.1
  • 21
    • 50849130652 scopus 로고    scopus 로고
    • SIMONOFF, J. S. (1996). Smoothing Methods in Statistics. Springer, New York. MR1391963
    • SIMONOFF, J. S. (1996). Smoothing Methods in Statistics. Springer, New York. MR1391963
  • 22
    • 0000935894 scopus 로고
    • Spline smoothing and optimal rates of convergence in nonparametric regression models
    • MR0803752
    • SPECKMAN, P. (1985). Spline smoothing and optimal rates of convergence in nonparametric regression models. Ann. Statist. 13 970-983. MR0803752
    • (1985) Ann. Statist , vol.13 , pp. 970-983
    • SPECKMAN, P.1
  • 23
    • 0000439527 scopus 로고
    • Optimal rates of convergence for nonparametric estimators
    • MR0594650
    • STONE, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 1348-1360. MR0594650
    • (1980) Ann. Statist , vol.8 , pp. 1348-1360
    • STONE, C.J.1
  • 24
    • 0000439527 scopus 로고
    • Optimal global rates of convergence for nonparametric regression
    • MR0673642
    • STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1040-1053. MR0673642
    • (1982) Ann. Statist , vol.10 , pp. 1040-1053
    • STONE, C.J.1
  • 25
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • MR0356377
    • STONE, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. Ser. B 36 111-147. MR0356377
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.36 , pp. 111-147
    • STONE, M.1
  • 27
    • 50849093308 scopus 로고    scopus 로고
    • VAN DER LAAN, M. J., DUDOIT, S. and VAN DER VAART, A. W. (2006). The cross-validated adaptive epsilon-net estimator. Statist. Decisions 24, 373-395. MR2305113
    • VAN DER LAAN, M. J., DUDOIT, S. and VAN DER VAART, A. W. (2006). The cross-validated adaptive epsilon-net estimator. Statist. Decisions 24, 373-395. MR2305113
  • 28
    • 50849091035 scopus 로고    scopus 로고
    • Oracle inequalities for multi-fold cross-validation
    • MR2305112
    • VAN DER VAART, A. W., DUDOIT, S. and VAN DER LAAN, M. J. (2006). Oracle inequalities for multi-fold cross-validation. Statist. Decisions 24 351-371. MR2305112
    • (2006) Statist. Decisions , vol.24 , pp. 351-371
    • VAN DER VAART, A.W.1    DUDOIT, S.2    VAN DER LAAN, M.J.3
  • 29
    • 50849139667 scopus 로고    scopus 로고
    • WAHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. MR1045442
    • WAHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. MR1045442
  • 30
    • 50849133331 scopus 로고    scopus 로고
    • WEGKAMP, M. (2003). Model selection in nonparametric regression. Ann. Statist. 31252-273. MR1962506
    • WEGKAMP, M. (2003). Model selection in nonparametric regression. Ann. Statist. 31252-273. MR1962506
  • 31
    • 85017369930 scopus 로고    scopus 로고
    • WEISBERG, S. (2005). Applied Linear Regression, 3rd ed. Wiley, Hoboken, NJ. MR2112740
    • WEISBERG, S. (2005). Applied Linear Regression, 3rd ed. Wiley, Hoboken, NJ. MR2112740
  • 32
    • 0010378244 scopus 로고
    • On the consistency of cross-validation in kernel nonparametric regression
    • MR0720259
    • WONG, W. H. (1983). On the consistency of cross-validation in kernel nonparametric regression. Ann. Statist., 11 1136-1141. MR0720259
    • (1983) Ann. Statist , vol.11 , pp. 1136-1141
    • WONG, W.H.1
  • 33
    • 1542573460 scopus 로고    scopus 로고
    • Adaptive regression by mixing
    • MR1946426
    • YANG, Y. (2001). Adaptive regression by mixing. J. Amer. Statist. Assoc. 96 574-588. MR1946426
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 574-588
    • YANG, Y.1
  • 34
    • 0141573227 scopus 로고    scopus 로고
    • Regression with multiple candidate models: Selecting or mixing?
    • MR1997174
    • YANG, Y. (2003). Regression with multiple candidate models: Selecting or mixing? Statist. Sinica 13 783-809. MR1997174
    • (2003) Statist. Sinica , vol.13 , pp. 783-809
    • YANG, Y.1
  • 35
    • 21144472438 scopus 로고
    • Model selection via multifold cross validation
    • MR1212178
    • ZHANG, P. (1993). Model selection via multifold cross validation. Ann. Statist. 21 299-313. MR1212178
    • (1993) Ann. Statist , vol.21 , pp. 299-313
    • ZHANG, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.