메뉴 건너뛰기




Volumn 22, Issue 1, 2008, Pages 1-22

Runoff analysis for a small watershed of tono area Japan by back propagation artificial neural network with seasonal data

Author keywords

ARMA models; BPANN models; Rainfall runoff process; Rainy and dry seasons; Runoff analysis; Small watersheds; Tono test field

Indexed keywords

BACKPROPAGATION; CATCHMENTS; HYDROGEOLOGY; MATHEMATICAL MODELS; NEURAL NETWORKS; RAIN; RUNOFF; STATISTICAL METHODS;

EID: 37549060590     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-006-9141-0     Document Type: Article
Times cited : (23)

References (49)
  • 1
    • 3242685028 scopus 로고    scopus 로고
    • Neural network vs. ARMA modelling: Constructing benchmark case studies of river flow prediction
    • In: University of Bristol, 17-19 September
    • Abrahart RJ, See L (1998) Neural network vs. ARMA modelling: constructing benchmark case studies of river flow prediction, In: Proceedings of the 3rd International Conference on Geocomputation, University of Bristol, 17-19 September
    • (1998) Proceedings of the 3rd International Conference on Geocomputation
    • Abrahart, R.J.1    See, L.2
  • 2
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A, Singh RD (2004) Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Water Resour Manag 18:285-300
    • (2004) Water Resour Manag , vol.18 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: Preliminary concepts
    • ASCE, Task committee on application of artificial neural networks in hydrology
    • ASCE, Task committee on application of artificial neural networks in hydrology (2000) Artificial neural networks in hydrology I: Preliminary concepts. J Hydrol Eng 5(2):115-123
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M, Andrreussi P, Soldati A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191-1197
    • (1999) Water Resour Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andrreussi, P.2    Soldati, A.3
  • 6
    • 0001372809 scopus 로고
    • Nonlinear time-varying model of rainfall-runoff relation
    • Chiu CL, Huang JT (1970) Nonlinear time-varying model of rainfall-runoff relation. Water Resour Res 6(1):1277-1286
    • (1970) Water Resour Res , vol.6 , Issue.1 , pp. 1277-1286
    • Chiu, C.L.1    Huang, J.T.2
  • 7
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modelling of water table depth fluctuations
    • Coulibaly P, Anctil F, Ramon A, Bobee B (2001) Artificial neural network modelling of water table depth fluctuations. Water Resour Res 37(4):885-896
    • (2001) Water Resour Res , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Ramon, A.3    Bobee, B.4
  • 8
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos IN, Coulibaly P, Ioannis KT (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309:229-240
    • (2005) J Hydrol , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Ioannis, K.T.3
  • 9
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol Sci J 43(1):47-66
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80-108
    • (2001) Prog Phys Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 11
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
    • Dawson CW, Harpham C, Wilby RL, Chen Y (2002) Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China. Hydrol Earth Syst Sci 6(4):619-626
    • (2002) Hydrol Earth Syst Sci , vol.6 , Issue.4 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 12
    • 0003929150 scopus 로고
    • Linear theory of hydrologic systems
    • Agricultural Research Services U.S. Department of Agriculture, Washington D.C., Technical bulletin no. 1468
    • Dooge JCI (1973) Linear theory of hydrologic systems, Agricultural Research Services U.S. Department of Agriculture, Washington D.C., Technical bulletin no. 1468
    • (1973)
    • Dooge, J.C.I.1
  • 13
    • 0003252985 scopus 로고
    • Problems and methods of rainfall-runoff modeling
    • In: Ciriani TA, Maione U, Wallis JR (eds.) Wiley, New York
    • Dooge JCI (1977) Problems and methods of rainfall-runoff modeling. In: Ciriani TA, Maione U, Wallis JR (eds.) Mathematical models for surface water hydrology. Wiley, New York, pp 71-108
    • (1977) Mathematical Models for Surface Water Hydrology , pp. 71-108
    • Dooge, J.C.I.1
  • 14
    • 37549045791 scopus 로고
    • Eberhart RC Dobbins RW (eds) Academic, New York
    • Eberhart RC, Dobbins RW (eds) (1990) Neural network PC tools a practical guide. Academic, New York, pp 1-414
    • (1990) Neural Network PC Tools a Practical Guide , pp. 1-414
  • 15
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137:1-31
    • (1992) J Hydrol , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 17
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam MR, Watanabe K, Saegusa H (2000) Runoff analysis in humid forest catchment with artificial neural network. J Hydrol 235:117-136
    • (2000) J Hydrol , vol.235 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 18
    • 0347062586 scopus 로고    scopus 로고
    • Analysis of hydraulic pressure fluctuation in deep geologic formations in Tono area, Japan using artificial neural network
    • Gautam MR, Watanabe K, Saegusa H (2003) Analysis of hydraulic pressure fluctuation in deep geologic formations in Tono area, Japan using artificial neural network. J Hydrol 284:174-192
    • (2003) J Hydrol , vol.284 , pp. 174-192
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 19
    • 2342446731 scopus 로고    scopus 로고
    • Effect of bridge construction on floodplain hydrology - Assessment by using monitored data and artificial neural network models
    • Gautam MR, Watanabe K, Ohno H (2004) Effect of bridge construction on floodplain hydrology - assessment by using monitored data and artificial neural network models. J Hydrol 292:182-197
    • (2004) J Hydrol , vol.292 , pp. 182-197
    • Gautam, M.R.1    Watanabe, K.2    Ohno, H.3
  • 21
    • 37549004558 scopus 로고    scopus 로고
    • The art of applying environmental science at a small watershed scale: A case study, Tseycum Creek, British Columbia
    • Hamilton S (2005) The art of applying environmental science at a small watershed scale: A case study, Tseycum Creek, British Columbia. In: Proceedings of the 2005 Puget Sound Georgia basin research conference
    • (2005) Proceedings of the 2005 Puget Sound Georgia Basin Research Conference
    • Hamilton, S.1
  • 22
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour Res 31:2517-2530
    • (1995) Water Resour Res , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 23
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalization beyond the calibration range
    • Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: Generalization beyond the calibration range. J Hydrol 233:138-153
    • (2000) J Hydrol , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 24
    • 0034895715 scopus 로고    scopus 로고
    • Neural network based prediction of ground surface settlements due to tunneling
    • Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS (2001) Neural network based prediction of ground surface settlements due to tunneling. Comput Geotech 28:517-547
    • (2001) Comput Geotech , vol.28 , pp. 517-547
    • Kim, C.Y.1    Bae, G.J.2    Hong, S.W.3    Park, C.H.4    Moon, H.K.5    Shin, H.S.6
  • 25
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32:1013-1022
    • (1996) Water Resour Res , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 17144442570 scopus 로고    scopus 로고
    • Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods
    • Maria CM, Wenceslao GM, Manuel FB, Jose MPS, Roman LC (2004) Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods. J Hydrol 296:38-58
    • (2004) J Hydrol , vol.296 , pp. 38-58
    • Maria, C.M.1    Wenceslao, G.M.2    Manuel, F.B.3    Jose, M.P.S.4    Roman, L.C.5
  • 27
    • 0003486924 scopus 로고
    • Practical neural network recipes in C++
    • Academic, USA
    • Masters T (1993) Practical neural network recipes in C++. Academic, USA
    • (1993)
    • Masters, T.1
  • 29
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115-133
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 30
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfallrunoff models
    • Minns AW, Hall MJ (1996) Artificial neural networks as rainfallrunoff models. Hydrol Sci J 41(3):399-417
    • (1996) Hydrol Sci J , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 31
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, part 1 - A discussion of principles
    • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part 1 - a discussion of principles. J Hydrol 10:282-290
    • (1970) J Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 32
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • Oscar RD, Eduardo AV (2002) Artificial neural networks for streamflow prediction. J Hydraul Res 40(5):547-554
    • (2002) J Hydraul Res , vol.40 , Issue.5 , pp. 547-554
    • Oscar, R.D.1    Eduardo, A.V.2
  • 33
    • 0016961628 scopus 로고
    • Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed
    • Pilgrim DH (1976) Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed. Water Resour Res 12(3):487-496
    • (1976) Water Resour Res , vol.12 , Issue.3 , pp. 487-496
    • Pilgrim, D.H.1
  • 34
    • 0029413038 scopus 로고
    • Multivariate modeling of water resources time series using artificial neural networks
    • Raman H, Sunilkumar N (1995) Multivariate modeling of water resources time series using artificial neural networks. Hydrol Sci J 40:145-163
    • (1995) Hydrol Sci J , vol.40 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 37
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin AY (1997) Application of a neural network technique to rainfall-runoff modeling. J Hydrol 199:272-294
    • (1997) J Hydrol , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 38
    • 0035701248 scopus 로고    scopus 로고
    • A non-linear neural network technique for updating of river flow forecasts
    • Shamseldin AY, O'Connor KM (2001) A non-linear neural network technique for updating of river flow forecasts. Hydrol Earth Syst Sci 5(4):577-597
    • (2001) Hydrol Earth Syst Sci , vol.5 , Issue.4 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 39
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multi-layer feed forward neural network method used for river flow forecasting
    • Shamseldin AY, Nasr AE, O'Connor KM (2002) Comparison of different forms of the multi-layer feed forward neural network method used for river flow forecasting. Hydrol Earth Syst Sci 6(4):671-684
    • (2002) Hydrol Earth Syst Sci , vol.6 , Issue.4 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'Connor, K.M.3
  • 40
    • 27644448548 scopus 로고    scopus 로고
    • Simulation of flood flow in a river system using artificial neural networks
    • Shrestha RR, Stephen T, Franz N (2005) Simulation of flood flow in a river system using artificial neural networks. Hydrol Earth Syst Sci 9(4):313-321
    • (2005) Hydrol Earth Syst Sci , vol.9 , Issue.4 , pp. 313-321
    • Shrestha, R.R.1    Stephen, T.2    Franz, N.3
  • 42
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • Tingsanchali T, Gautam MR (2000) Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrol Process 14:2473-2487
    • (2000) Hydrol Process , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 43
    • 0024165503 scopus 로고    scopus 로고
    • Rainfall-runoff modeling - Past present and future
    • Todini E (1998) Rainfall-runoff modeling - past present and future. J Hydrol 100:341-352
    • (1998) J Hydrol , vol.100 , pp. 341-352
    • Todini, E.1
  • 44
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-Runoff modeling in the Little Patuxent River Basin using artificial neural networks
    • Tokar AS, Johnson PA (1999) Rainfall-Runoff modeling in the Little Patuxent River Basin using artificial neural networks. ASCE Hydrol J 4(3):232-239
    • (1999) ASCE Hydrol J , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 46
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • Vos NJD, Rientjes THM (2005) Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation. Hydrol Earth Syst Sci 9:111-126
    • (2005) Hydrol Earth Syst Sci , vol.9 , pp. 111-126
    • Vos, N.J.D.1    Rientjes, T.H.M.2
  • 48
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214:32-48
    • (1999) J Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 49
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B, Govindaraju RS (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour Res 36(3):753-762
    • (2000) Water Resour Res , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.