-
1
-
-
3242685028
-
Neural network vs. ARMA modelling: Constructing benchmark case studies of river flow prediction
-
In: University of Bristol, 17-19 September
-
Abrahart RJ, See L (1998) Neural network vs. ARMA modelling: constructing benchmark case studies of river flow prediction, In: Proceedings of the 3rd International Conference on Geocomputation, University of Bristol, 17-19 September
-
(1998)
Proceedings of the 3rd International Conference on Geocomputation
-
-
Abrahart, R.J.1
See, L.2
-
2
-
-
4644274685
-
Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
-
Agarwal A, Singh RD (2004) Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Water Resour Manag 18:285-300
-
(2004)
Water Resour Manag
, vol.18
, pp. 285-300
-
-
Agarwal, A.1
Singh, R.D.2
-
3
-
-
0034174280
-
Artificial neural networks in hydrology I: Preliminary concepts
-
ASCE, Task committee on application of artificial neural networks in hydrology
-
ASCE, Task committee on application of artificial neural networks in hydrology (2000) Artificial neural networks in hydrology I: Preliminary concepts. J Hydrol Eng 5(2):115-123
-
(2000)
J Hydrol Eng
, vol.5
, Issue.2
, pp. 115-123
-
-
-
5
-
-
0032688155
-
River flood forecasting with a neural network model
-
Campolo M, Andrreussi P, Soldati A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191-1197
-
(1999)
Water Resour Res
, vol.35
, Issue.4
, pp. 1191-1197
-
-
Campolo, M.1
Andrreussi, P.2
Soldati, A.3
-
6
-
-
0001372809
-
Nonlinear time-varying model of rainfall-runoff relation
-
Chiu CL, Huang JT (1970) Nonlinear time-varying model of rainfall-runoff relation. Water Resour Res 6(1):1277-1286
-
(1970)
Water Resour Res
, vol.6
, Issue.1
, pp. 1277-1286
-
-
Chiu, C.L.1
Huang, J.T.2
-
7
-
-
0034993945
-
Artificial neural network modelling of water table depth fluctuations
-
Coulibaly P, Anctil F, Ramon A, Bobee B (2001) Artificial neural network modelling of water table depth fluctuations. Water Resour Res 37(4):885-896
-
(2001)
Water Resour Res
, vol.37
, Issue.4
, pp. 885-896
-
-
Coulibaly, P.1
Anctil, F.2
Ramon, A.3
Bobee, B.4
-
8
-
-
20344369583
-
Groundwater level forecasting using artificial neural networks
-
Daliakopoulos IN, Coulibaly P, Ioannis KT (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309:229-240
-
(2005)
J Hydrol
, vol.309
, pp. 229-240
-
-
Daliakopoulos, I.N.1
Coulibaly, P.2
Ioannis, K.T.3
-
9
-
-
0032005702
-
An artificial neural network approach to rainfall-runoff modelling
-
Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol Sci J 43(1):47-66
-
(1998)
Hydrol Sci J
, vol.43
, Issue.1
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
10
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80-108
-
(2001)
Prog Phys Geogr
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
11
-
-
0036698154
-
Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
-
Dawson CW, Harpham C, Wilby RL, Chen Y (2002) Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China. Hydrol Earth Syst Sci 6(4):619-626
-
(2002)
Hydrol Earth Syst Sci
, vol.6
, Issue.4
, pp. 619-626
-
-
Dawson, C.W.1
Harpham, C.2
Wilby, R.L.3
Chen, Y.4
-
12
-
-
0003929150
-
Linear theory of hydrologic systems
-
Agricultural Research Services U.S. Department of Agriculture, Washington D.C., Technical bulletin no. 1468
-
Dooge JCI (1973) Linear theory of hydrologic systems, Agricultural Research Services U.S. Department of Agriculture, Washington D.C., Technical bulletin no. 1468
-
(1973)
-
-
Dooge, J.C.I.1
-
13
-
-
0003252985
-
Problems and methods of rainfall-runoff modeling
-
In: Ciriani TA, Maione U, Wallis JR (eds.) Wiley, New York
-
Dooge JCI (1977) Problems and methods of rainfall-runoff modeling. In: Ciriani TA, Maione U, Wallis JR (eds.) Mathematical models for surface water hydrology. Wiley, New York, pp 71-108
-
(1977)
Mathematical Models for Surface Water Hydrology
, pp. 71-108
-
-
Dooge, J.C.I.1
-
14
-
-
37549045791
-
-
Eberhart RC Dobbins RW (eds) Academic, New York
-
Eberhart RC, Dobbins RW (eds) (1990) Neural network PC tools a practical guide. Academic, New York, pp 1-414
-
(1990)
Neural Network PC Tools a Practical Guide
, pp. 1-414
-
-
-
15
-
-
0027007868
-
Rainfall forecasting in space and time using a neural network
-
French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137:1-31
-
(1992)
J Hydrol
, vol.137
, pp. 1-31
-
-
French, M.N.1
Krajewski, W.F.2
Cuykendall, R.R.3
-
17
-
-
0034702917
-
Runoff analysis in humid forest catchment with artificial neural network
-
Gautam MR, Watanabe K, Saegusa H (2000) Runoff analysis in humid forest catchment with artificial neural network. J Hydrol 235:117-136
-
(2000)
J Hydrol
, vol.235
, pp. 117-136
-
-
Gautam, M.R.1
Watanabe, K.2
Saegusa, H.3
-
18
-
-
0347062586
-
Analysis of hydraulic pressure fluctuation in deep geologic formations in Tono area, Japan using artificial neural network
-
Gautam MR, Watanabe K, Saegusa H (2003) Analysis of hydraulic pressure fluctuation in deep geologic formations in Tono area, Japan using artificial neural network. J Hydrol 284:174-192
-
(2003)
J Hydrol
, vol.284
, pp. 174-192
-
-
Gautam, M.R.1
Watanabe, K.2
Saegusa, H.3
-
19
-
-
2342446731
-
Effect of bridge construction on floodplain hydrology - Assessment by using monitored data and artificial neural network models
-
Gautam MR, Watanabe K, Ohno H (2004) Effect of bridge construction on floodplain hydrology - assessment by using monitored data and artificial neural network models. J Hydrol 292:182-197
-
(2004)
J Hydrol
, vol.292
, pp. 182-197
-
-
Gautam, M.R.1
Watanabe, K.2
Ohno, H.3
-
21
-
-
37549004558
-
The art of applying environmental science at a small watershed scale: A case study, Tseycum Creek, British Columbia
-
Hamilton S (2005) The art of applying environmental science at a small watershed scale: A case study, Tseycum Creek, British Columbia. In: Proceedings of the 2005 Puget Sound Georgia basin research conference
-
(2005)
Proceedings of the 2005 Puget Sound Georgia Basin Research Conference
-
-
Hamilton, S.1
-
22
-
-
0029413797
-
Artificial neural network modelling of the rainfall-runoff process
-
Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour Res 31:2517-2530
-
(1995)
Water Resour Res
, vol.31
, pp. 2517-2530
-
-
Hsu, K.L.1
Gupta, H.V.2
Sorooshian, S.3
-
23
-
-
0034641121
-
River flow prediction using artificial neural networks: Generalization beyond the calibration range
-
Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: Generalization beyond the calibration range. J Hydrol 233:138-153
-
(2000)
J Hydrol
, vol.233
, pp. 138-153
-
-
Imrie, C.E.1
Durucan, S.2
Korre, A.3
-
24
-
-
0034895715
-
Neural network based prediction of ground surface settlements due to tunneling
-
Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS (2001) Neural network based prediction of ground surface settlements due to tunneling. Comput Geotech 28:517-547
-
(2001)
Comput Geotech
, vol.28
, pp. 517-547
-
-
Kim, C.Y.1
Bae, G.J.2
Hong, S.W.3
Park, C.H.4
Moon, H.K.5
Shin, H.S.6
-
25
-
-
0029663621
-
The use of artificial neural networks for the prediction of water quality parameters
-
Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32:1013-1022
-
(1996)
Water Resour Res
, vol.32
, pp. 1013-1022
-
-
Maier, H.R.1
Dandy, G.C.2
-
26
-
-
17144442570
-
Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods
-
Maria CM, Wenceslao GM, Manuel FB, Jose MPS, Roman LC (2004) Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods. J Hydrol 296:38-58
-
(2004)
J Hydrol
, vol.296
, pp. 38-58
-
-
Maria, C.M.1
Wenceslao, G.M.2
Manuel, F.B.3
Jose, M.P.S.4
Roman, L.C.5
-
27
-
-
0003486924
-
Practical neural network recipes in C++
-
Academic, USA
-
Masters T (1993) Practical neural network recipes in C++. Academic, USA
-
(1993)
-
-
Masters, T.1
-
29
-
-
51249194645
-
A logical calculus of the ideas imminent in nervous activity
-
McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115-133
-
(1943)
Bull Math Biophys
, vol.5
, pp. 115-133
-
-
McCulloch, W.S.1
Pitts, W.2
-
30
-
-
0030159380
-
Artificial neural networks as rainfallrunoff models
-
Minns AW, Hall MJ (1996) Artificial neural networks as rainfallrunoff models. Hydrol Sci J 41(3):399-417
-
(1996)
Hydrol Sci J
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
31
-
-
0014776873
-
River flow forecasting through conceptual models, part 1 - A discussion of principles
-
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part 1 - a discussion of principles. J Hydrol 10:282-290
-
(1970)
J Hydrol
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
32
-
-
0038502200
-
Artificial neural networks for streamflow prediction
-
Oscar RD, Eduardo AV (2002) Artificial neural networks for streamflow prediction. J Hydraul Res 40(5):547-554
-
(2002)
J Hydraul Res
, vol.40
, Issue.5
, pp. 547-554
-
-
Oscar, R.D.1
Eduardo, A.V.2
-
33
-
-
0016961628
-
Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed
-
Pilgrim DH (1976) Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed. Water Resour Res 12(3):487-496
-
(1976)
Water Resour Res
, vol.12
, Issue.3
, pp. 487-496
-
-
Pilgrim, D.H.1
-
34
-
-
0029413038
-
Multivariate modeling of water resources time series using artificial neural networks
-
Raman H, Sunilkumar N (1995) Multivariate modeling of water resources time series using artificial neural networks. Hydrol Sci J 40:145-163
-
(1995)
Hydrol Sci J
, vol.40
, pp. 145-163
-
-
Raman, H.1
Sunilkumar, N.2
-
36
-
-
0003604539
-
-
Littleton, Colorado Water Resources Publications, Colorado
-
Salas JD, Delleur JW, Yevjevich, V, Lane WL (1980) Applied modeling of hydrologic time series, Littleton, Colorado. Water Resources Publications, Colorado
-
(1980)
Applied Modeling of Hydrologic Time Series
-
-
Salas, J.D.1
Delleur, J.W.2
Yevjevich, V.3
Lane, W.L.4
-
37
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modeling
-
Shamseldin AY (1997) Application of a neural network technique to rainfall-runoff modeling. J Hydrol 199:272-294
-
(1997)
J Hydrol
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
38
-
-
0035701248
-
A non-linear neural network technique for updating of river flow forecasts
-
Shamseldin AY, O'Connor KM (2001) A non-linear neural network technique for updating of river flow forecasts. Hydrol Earth Syst Sci 5(4):577-597
-
(2001)
Hydrol Earth Syst Sci
, vol.5
, Issue.4
, pp. 577-597
-
-
Shamseldin, A.Y.1
O'Connor, K.M.2
-
39
-
-
0036698155
-
Comparison of different forms of the multi-layer feed forward neural network method used for river flow forecasting
-
Shamseldin AY, Nasr AE, O'Connor KM (2002) Comparison of different forms of the multi-layer feed forward neural network method used for river flow forecasting. Hydrol Earth Syst Sci 6(4):671-684
-
(2002)
Hydrol Earth Syst Sci
, vol.6
, Issue.4
, pp. 671-684
-
-
Shamseldin, A.Y.1
Nasr, A.E.2
O'Connor, K.M.3
-
40
-
-
27644448548
-
Simulation of flood flow in a river system using artificial neural networks
-
Shrestha RR, Stephen T, Franz N (2005) Simulation of flood flow in a river system using artificial neural networks. Hydrol Earth Syst Sci 9(4):313-321
-
(2005)
Hydrol Earth Syst Sci
, vol.9
, Issue.4
, pp. 313-321
-
-
Shrestha, R.R.1
Stephen, T.2
Franz, N.3
-
42
-
-
0034298851
-
Application of tank, NAM, ARMA and neural network models to flood forecasting
-
Tingsanchali T, Gautam MR (2000) Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrol Process 14:2473-2487
-
(2000)
Hydrol Process
, vol.14
, pp. 2473-2487
-
-
Tingsanchali, T.1
Gautam, M.R.2
-
43
-
-
0024165503
-
Rainfall-runoff modeling - Past present and future
-
Todini E (1998) Rainfall-runoff modeling - past present and future. J Hydrol 100:341-352
-
(1998)
J Hydrol
, vol.100
, pp. 341-352
-
-
Todini, E.1
-
44
-
-
0033167344
-
Rainfall-Runoff modeling in the Little Patuxent River Basin using artificial neural networks
-
Tokar AS, Johnson PA (1999) Rainfall-Runoff modeling in the Little Patuxent River Basin using artificial neural networks. ASCE Hydrol J 4(3):232-239
-
(1999)
ASCE Hydrol J
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
46
-
-
23744444467
-
Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
-
Vos NJD, Rientjes THM (2005) Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation. Hydrol Earth Syst Sci 9:111-126
-
(2005)
Hydrol Earth Syst Sci
, vol.9
, pp. 111-126
-
-
Vos, N.J.D.1
Rientjes, T.H.M.2
-
48
-
-
0033019602
-
Short term streamflow forecasting using artificial neural networks
-
Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214:32-48
-
(1999)
J Hydrol
, vol.214
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
-
49
-
-
0034100712
-
Prediction of watershed runoff using Bayesian concepts and modular neural networks
-
Zhang B, Govindaraju RS (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour Res 36(3):753-762
-
(2000)
Water Resour Res
, vol.36
, Issue.3
, pp. 753-762
-
-
Zhang, B.1
Govindaraju, R.S.2
|