메뉴 건너뛰기




Volumn 18, Issue 2, 2008, Pages 125-135

Bayesian inference for a discretely observed stochastic kinetic model

Author keywords

Biochemical networks; Block updating; Lotka Volterra model; Markov jump process; MCMC methods; Parameter estimation; Reversible jump; Systems biology

Indexed keywords


EID: 41549140160     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-007-9043-x     Document Type: Article
Times cited : (201)

References (38)
  • 2
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells
    • Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 633-648 (1998)
    • (1998) Genetics , vol.149 , pp. 633-648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 3
    • 33745375673 scopus 로고    scopus 로고
    • Single cell resolution in regulation of gene expression
    • 10.1038/msb4100020
    • Bahcall, O.G.: Single cell resolution in regulation of gene expression, Mol. Syst. Biol. (2005). doi: 10.1038/msb4100020
    • (2005) Mol. Syst. Biol.
    • Bahcall, O.G.1
  • 5
    • 3843130537 scopus 로고    scopus 로고
    • Bayesian inference for Markov processes with diffusion and discrete components
    • Blackwell, P.G.: Bayesian inference for Markov processes with diffusion and discrete components. Biometrika 90, 613-627 (2003)
    • (2003) Biometrika , vol.90 , pp. 613-627
    • Blackwell, P.G.1
  • 7
    • 34547380990 scopus 로고    scopus 로고
    • Bayesian inference for SEIR epidemic models with time-inhomogeneous removal rates
    • Boys, R.J., Giles, P.R.: Bayesian inference for SEIR epidemic models with time-inhomogeneous removal rates. J. Math. Biol. 55, 223-247 (2007)
    • (2007) J. Math. Biol. , vol.55 , pp. 223-247
    • Boys, R.J.1    Giles, P.R.2
  • 8
    • 42749109054 scopus 로고    scopus 로고
    • Statistical mechanical approaches to models with many poorly known parameters
    • Brown, K.S., Sethna, J.P.: Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E 68, 021904 (2003)
    • (2003) Phys. Rev. e , vol.68 , pp. 021904
    • Brown, K.S.1    Sethna, J.P.2
  • 9
    • 0000761439 scopus 로고    scopus 로고
    • Markov chain Monte Carlo in conditionally Gaussian state space models
    • Carter, C.K., Kohn, R.: Markov chain Monte Carlo in conditionally Gaussian state space models. Biometrika 83, 589-601 (1996)
    • (1996) Biometrika , vol.83 , pp. 589-601
    • Carter, C.K.1    Kohn, R.2
  • 11
    • 0031780720 scopus 로고    scopus 로고
    • Estimating parameters in stochastic compartmental models using Markov chain methods
    • Gibson, G.J., Renshaw, E.: Estimating parameters in stochastic compartmental models using Markov chain methods. IMA J. Math. Appl. Med. Biol. 15, 19-40 (1998)
    • (1998) IMA J. Math. Appl. Med. Biol. , vol.15 , pp. 19-40
    • Gibson, G.J.1    Renshaw, E.2
  • 12
    • 38349192229 scopus 로고    scopus 로고
    • Bayesian inference for functional response in a stochastic predator-prey system
    • doi: 10.1007/s11538-007-9256-3
    • Gilioli, G., Pasquali, S., Ruggeri, F.: Bayesian inference for functional response in a stochastic predator-prey system. IBull. Math. Biol. (2008). doi: 10.1007/s11538-007-9256-3
    • (2008) IBull. Math. Biol.
    • Gilioli, G.1    Pasquali, S.2    Ruggeri, F.3
  • 13
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340-2361 (1977)
    • (1977) J. Phys. Chem. , vol.81 , pp. 2340-2361
    • Gillespie, D.T.1
  • 14
    • 33744475347 scopus 로고    scopus 로고
    • Bayesian sequential inference for stochastic kinetic biochemical network models
    • 3
    • Golightly, A., Wilkinson, D.J.: Bayesian sequential inference for stochastic kinetic biochemical network models. J. Comput. Biol. 13(3), 838-851 (2006)
    • (2006) J. Comput. Biol. , vol.13 , pp. 838-851
    • Golightly, A.1    Wilkinson, D.J.2
  • 15
    • 35549009345 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear multivariate diffusion models observed with error
    • Golightly, A., Wilkinson, D.J.: Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Stat. Data Anal. 52, 1674-1693 (2008)
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 1674-1693
    • Golightly, A.1    Wilkinson, D.J.2
  • 17
    • 0029394767 scopus 로고
    • Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli?
    • Guptasarma, P.: Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? BioEssays 17, 987-997 (1995)
    • (1995) BioEssays , vol.17 , pp. 987-997
    • Guptasarma, P.1
  • 18
  • 19
    • 0033894273 scopus 로고    scopus 로고
    • Identifying predator-prey processes from time-series
    • Jost, C., Arditi, R.: Identifying predator-prey processes from time-series. Theor. Pop. Biol. 57, 325-337 (2000)
    • (2000) Theor. Pop. Biol. , vol.57 , pp. 325-337
    • Jost, C.1    Arditi, R.2
  • 22
    • 27244440301 scopus 로고    scopus 로고
    • Biochemical networks with uncertain parameters
    • 3
    • Liebermeister, W., Klipp, E.: Biochemical networks with uncertain parameters. IEE Syst. Biol. 152(3), 97-107 (2005)
    • (2005) IEE Syst. Biol. , vol.152 , pp. 97-107
    • Liebermeister, W.1    Klipp, E.2
  • 23
    • 0242546942 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for switching diffusion models
    • Liechty, J.C., Roberts, G.O.: Markov chain Monte Carlo methods for switching diffusion models. Biometrika 88, 299-315 (2001)
    • (2001) Biometrika , vol.88 , pp. 299-315
    • Liechty, J.C.1    Roberts, G.O.2
  • 25
    • 0031029852 scopus 로고    scopus 로고
    • Stochastic mechanisms in gene expression
    • McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814-819 (1997)
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 814-819
    • McAdams, H.H.1    Arkin, A.2
  • 26
    • 0033083733 scopus 로고    scopus 로고
    • It's a noisy business! Genetic regulation at the nanomolar scale
    • McAdams, H.H., Arkin, A.: It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65-69 (1999)
    • (1999) Trends Genet. , vol.15 , pp. 65-69
    • McAdams, H.H.1    Arkin, A.2
  • 27
    • 33747624926 scopus 로고    scopus 로고
    • High-throughput fluorescence microscopy for systems biology
    • Pepperkok, R., Ellenberg, J.: High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7, 690-696 (2006)
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 690-696
    • Pepperkok, R.1    Ellenberg, J.2
  • 28
    • 33746582040 scopus 로고    scopus 로고
    • Parameter estimation in stochastic biochemical reactions
    • 4
    • Reinker, S., Altman, R.M., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEE Syst. Biol. 153(4), 168-178 (2006)
    • (2006) IEE Syst. Biol. , vol.153 , pp. 168-178
    • Reinker, S.1    Altman, R.M.2    Timmer, J.3
  • 29
    • 33746907501 scopus 로고    scopus 로고
    • A stochastic model of gene transcription: An application to L1 retrotransposition events
    • 1
    • Rempala, G.A., Ramos, K.S., Kalbfleisch, T.: A stochastic model of gene transcription: an application to L1 retrotransposition events. J. Theor. Biol. 242(1), 101-116 (2006)
    • (2006) J. Theor. Biol. , vol.242 , pp. 101-116
    • Rempala, G.A.1    Ramos, K.S.2    Kalbfleisch, T.3
  • 32
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • 3
    • Shephard, N., Pitt, M.K.: Likelihood analysis of non-Gaussian measurement time series. Biometrika 84(3), 653-667 (1997)
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.K.2
  • 33
    • 33845875759 scopus 로고    scopus 로고
    • Simulated maximum likelihood method for estimating kinetic rates in gene expression
    • Tian, T., Xu, S., Gao, J., Burrage, K.: Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics 23, 84-91 (2007)
    • (2007) Bioinformatics , vol.23 , pp. 84-91
    • Tian, T.1    Xu, S.2    Gao, J.3    Burrage, K.4
  • 34
    • 0006170098 scopus 로고
    • Fluctuations in the abundance of a species considered mathematically
    • Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558-560 (1926)
    • (1926) Nature , vol.118 , pp. 558-560
    • Volterra, V.1
  • 36
    • 0242286591 scopus 로고    scopus 로고
    • A sparse matrix approach to Bayesian computation in large linear models
    • Wilkinson, D.J., Yeung, S.K.H.: A sparse matrix approach to Bayesian computation in large linear models. Comput. Stat. Data Anal. 44, 493-516 (2004)
    • (2004) Comput. Stat. Data Anal. , vol.44 , pp. 493-516
    • Wilkinson, D.J.1    Yeung, S.K.H.2
  • 37
    • 0001508049 scopus 로고
    • Comparison of deterministic and stochastic kinetics for nonlinear systems
    • Zheng, Q., Ross, J.: Comparison of deterministic and stochastic kinetics for nonlinear systems. J. Chem. Phys. 94, 3644-3648 (1991)
    • (1991) J. Chem. Phys. , vol.94 , pp. 3644-3648
    • Zheng, Q.1    Ross, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.