-
1
-
-
6944224314
-
A recursive algorithm for Markov random fields
-
BARTOLUCCI, F. & BESAG, J. (2002). A recursive algorithm for Markov random fields. Biometrika 89, 724-30.
-
(2002)
Biometrika
, vol.89
, pp. 724-730
-
-
Bartolucci, F.1
Besag, J.2
-
2
-
-
0041360504
-
Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling
-
BERTHELSEN, K. K. & MØLLER, J. (2003). Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling. Scand. J. Statist. 30, 549-64.
-
(2003)
Scand. J. Statist.
, vol.30
, pp. 549-564
-
-
Berthelsen, K.K.1
Møller, J.2
-
3
-
-
33745607179
-
Bayesian analysis of Markov point processes
-
Ed. A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan, New York: Springer
-
BERTHELSEN, K. K. & MØLLER, J. (2006). Bayesian analysis of Markov point processes. In Case Studies in Spatial Point Process Modeling, Ed. A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan, pp. 85-97, New York: Springer.
-
(2006)
Case Studies in Spatial Point Process Modeling
, pp. 85-97
-
-
Berthelsen, K.K.1
Møller, J.2
-
4
-
-
0000582521
-
Statistical analysis of non-lattice data
-
BESAG, J. (1975), Statistical analysis of non-lattice data. The Statistician 24, 179-95.
-
(1975)
The Statistician
, vol.24
, pp. 179-195
-
-
Besag, J.1
-
5
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
BESAG, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems (with Discussion). J. R. Statist. Soc. B 36, 192-236.
-
(1974)
J. R. Statist. Soc. B
, vol.36
, pp. 192-236
-
-
Besag, J.E.1
-
6
-
-
0041906743
-
From Metropolis to diffusions: Gibbs states and optimal scaling
-
BREYER, L. A. & ROBERTS, G. O. (2000). From Metropolis to diffusions: Gibbs states and optimal scaling. Stoch. Proces. Applic. 90, 181-206.
-
(2000)
Stoch. Proces. Applic.
, vol.90
, pp. 181-206
-
-
Breyer, L.A.1
Roberts, G.O.2
-
7
-
-
0031527297
-
On Monte Carlo methods for estimating ratios of normalizing constants
-
CHEN, M.-H. & SHAO, Q.-M. (1997). On Monte Carlo methods for estimating ratios of normalizing constants. Ann. Statist. 25, 1563-94.
-
(1997)
Ann. Statist.
, vol.25
, pp. 1563-1594
-
-
Chen, M.-H.1
Shao, Q.-M.2
-
8
-
-
33745628537
-
Directed Markov point processes as limits of partially ordered Markov models
-
CRESSIE, N., ZHU, J., BADDELEY, A. J. & NAIR, M. G. (2000). Directed Markov point processes as limits of partially ordered Markov models. Methodol. Comp. Appl. Prob. 2, 5-21.
-
(2000)
Methodol. Comp. Appl. Prob.
, vol.2
, pp. 5-21
-
-
Cressie, N.1
Zhu, J.2
Baddeley, A.J.3
Nair, M.G.4
-
9
-
-
0000736067
-
Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
-
GELMAN, A. & MENG, X.-L. (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statist. Sci. 13, 163-85.
-
(1998)
Statist. Sci.
, vol.13
, pp. 163-185
-
-
Gelman, A.1
Meng, X.-L.2
-
10
-
-
0004012196
-
-
Boca Raton, FL: Chapman and Hall/CRC
-
GELMAN, A., CARLIN, J. B., STERN, H. S. & RUBIN, D. B. (2004). Bayesian Data Analysis, 2nd ed. Boca Raton, FL: Chapman and Hall/CRC.
-
(2004)
Bayesian Data Analysis, 2nd Ed.
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
11
-
-
0000051109
-
Constrained Monte Carlo maximum likelihood for dependent data
-
GEYER, C. J. & THOMPSON, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with Discussion). J. R. Statist. Soc. B 54, 657-99.
-
(1992)
J. R. Statist. Soc. B
, vol.54
, pp. 657-699
-
-
Geyer, C.J.1
Thompson, E.A.2
-
12
-
-
0036970574
-
Hidden Markov models and disease mapping
-
GREEN, P. J. & RICHARDSON, S. (2002). Hidden Markov models and disease mapping. J. Am. Statist. Assoc. 97, 1055-70.
-
(2002)
J. Am. Statist. Assoc.
, vol.97
, pp. 1055-1070
-
-
Green, P.J.1
Richardson, S.2
-
13
-
-
0041339533
-
Parametric estimation in Markov random field image modeling with imperfect observations. A comparative study
-
IBANEZ, M. & SIMO, A. (2003). Parametric estimation in Markov random field image modeling with imperfect observations. A comparative study. Pat. Recog. Lett. 24, 2377-89.
-
(2003)
Pat. Recog. Lett.
, vol.24
, pp. 2377-2389
-
-
Ibanez, M.1
Simo, A.2
-
14
-
-
0036004159
-
Difficulties in estimating the normalizing constant of the posterior for a neural network
-
LEE, H. K. H. (2002). Difficulties in estimating the normalizing constant of the posterior for a neural network. J. Comp. Graph. Statist. 11, 222-35.
-
(2002)
J. Comp. Graph. Statist.
, vol.11
, pp. 222-235
-
-
Lee, H.K.H.1
-
15
-
-
21444451325
-
Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
-
MENG, X. L. & WONG, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statist. Sinica 6, 831-60.
-
(1996)
Statist. Sinica
, vol.6
, pp. 831-860
-
-
Meng, X.L.1
Wong, W.H.2
-
17
-
-
0005193926
-
Exact sampling with coupled Markov chains and applications to statistical mechanics
-
PROPP, J. & WILSON, D. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algor. 9, 223-52.
-
(1996)
Random Struct. Algor.
, vol.9
, pp. 223-252
-
-
Propp, J.1
Wilson, D.2
-
18
-
-
33745604624
-
A theoretical framework for approximate Bayesian computation
-
Ed. A. Francis, K. Matawie, A. Oshlack and G. Smyth, Sydney, Australia: University of Western Sydney
-
REEVES, R. & PETTITT, A. (2005). A theoretical framework for approximate Bayesian computation. In 20th International Workshop on Statistical Modelling, Ed. A. Francis, K. Matawie, A. Oshlack and G. Smyth, pp. 393-6. Sydney, Australia: University of Western Sydney.
-
(2005)
20th International Workshop on Statistical Modelling
, pp. 393-396
-
-
Reeves, R.1
Pettitt, A.2
-
19
-
-
24944590473
-
Efficient recursions for general factorisable models
-
REEVES, R. & PETTITT, A. N. (2004). Efficient recursions for general factorisable models. Biometrika 91, 751-7.
-
(2004)
Biometrika
, vol.91
, pp. 751-757
-
-
Reeves, R.1
Pettitt, A.N.2
-
21
-
-
0035995077
-
Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models
-
ROVERATO, A. (2002). Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scand. J. Statist. 29, 391-411.
-
(2002)
Scand. J. Statist.
, vol.29
, pp. 391-411
-
-
Roverato, A.1
-
22
-
-
3843149220
-
Efficient estimation of covariance selection models
-
WONG, F., CARTER, C. K. & KOHN, R. (2003). Efficient estimation of covariance selection models. Biometrika 90, 809-30.
-
(2003)
Biometrika
, vol.90
, pp. 809-830
-
-
Wong, F.1
Carter, C.K.2
Kohn, R.3
|