메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1024-1031

A least squares formulation for canonical correlation analysis

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; MACHINE LEARNING; SUPERVISED LEARNING; CURVE FITTING; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; ROBOT LEARNING; STRUCTURAL LOADS;

EID: 56449106936     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390285     Document Type: Conference Paper
Times cited : (80)

References (22)
  • 1
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach, F. R., & Jordan, M. I. (2003). Kernel independent component analysis. J. Mach. Learn. Res., 3, 1-48.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7, 2399-2434.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 33646544831 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • d'Aspremont, A., Ghaoui, L., Jordan, M., & Lanckriet, G. (2004). A direct formulation for sparse PCA using semidefinite programming. NIPS (pp. 41-48).
    • (2004) NIPS , pp. 41-48
    • d'Aspremont, A.1    Ghaoui, L.2    Jordan, M.3    Lanckriet, G.4
  • 6
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal 11-norm near-solution approximates the sparsest near-solution
    • Donoho, D. (2006). For most large underdetermined systems of linear equations, the minimal 11-norm near-solution approximates the sparsest near-solution. Communications on Pare and Applied Mathematics, 59, 907-934.
    • (2006) Communications on Pare and Applied Mathematics , vol.59 , pp. 907-934
    • Donoho, D.1
  • 10
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon, D. R., Szedmak, S. R., & Shawe-taylor, J. R. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Comput., 16, 2639-2664.
    • (2004) Neural Comput , vol.16 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.R.2    Shawe-taylor, J.R.3
  • 13
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 14
    • 0000107975 scopus 로고
    • Relations between two sets of variables
    • Hotelling, H. (1936). Relations between two sets of variables. Biometrika, 28, 312-377.
    • (1936) Biometrika , vol.28 , pp. 312-377
    • Hotelling, H.1
  • 17
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 18
    • 0012252471 scopus 로고    scopus 로고
    • Systematic determination of patterns of gene expression during Drosophila embryogenesis
    • Tomancak, P., & et al. (2002). Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biology, 3.
    • (2002) Genome Biology , vol.3
    • Tomancak, P.1    & et, al.2
  • 19
    • 84899021874 scopus 로고    scopus 로고
    • Graph-driven feature extraction from mieroarray data using diffusion kernels and kernel cca
    • Vert, J.-P., & Kanehisa, M. (2003). Graph-driven feature extraction from mieroarray data using diffusion kernels and kernel cca. NIPS (pp. 1425-1432).
    • (2003) NIPS , pp. 1425-1432
    • Vert, J.-P.1    Kanehisa, M.2
  • 20
    • 34547964600 scopus 로고    scopus 로고
    • Least squares linear discriminant analysis
    • Ye, J. (2007). Least squares linear discriminant analysis. ICML (pp. 1087-1094).
    • (2007) ICML , pp. 1087-1094
    • Ye, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.