메뉴 건너뛰기




Volumn , Issue , 2009, Pages 249-258

Self-adaptive anytime stream clustering

Author keywords

Anytime algorithms; Self adaptive algorithms; Stream clustering

Indexed keywords

ANYTIME ALGORITHM; CLUSTERING RESULTS; CONCEPT DRIFTS; DATA STREAM; INDEX STRUCTURE; INTER-ARRIVAL TIME; SELF ADAPTIVE ALGORITHMS; SELF-ADAPTIVE; SINGLE PASS; STREAMING DATA;

EID: 77951189927     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2009.47     Document Type: Conference Paper
Times cited : (53)

References (28)
  • 1
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for clustering evolving data streams," in VLDB, 2003.
    • (2003) VLDB
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 2
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for projected clustering of high dimensional data streams," in VLDB, 2004, pp. 852-863.
    • (2004) VLDB , pp. 852-863
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 3
    • 85011117106 scopus 로고    scopus 로고
    • Anytime measures for top-k algorithms
    • B. Arai, G. Das, D. Gunopulos, and N. Koudas, "Anytime measures for top-k algorithms," in VLDB, 2007, pp. 914-925.
    • (2007) VLDB , pp. 914-925
    • Arai, B.1    Das, G.2    Gunopulos, D.3    Koudas, N.4
  • 4
    • 0034592785 scopus 로고    scopus 로고
    • Using the fractal dimension to cluster datasets
    • D. Barbaŕa and P. Chen, "Using the fractal dimension to cluster datasets," in KDD, 2000, pp. 260-264.
    • (2000) KDD , pp. 260-264
    • Barbaŕa, D.1    Chen, P.2
  • 5
    • 0025447750 scopus 로고
    • The R*-tree: An efficient and robust access method for points and rectangles
    • N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, "The R*-tree: an efficient and robust access method for points and rectangles," in SIGMOD, 1990, pp. 322-331.
    • (1990) SIGMOD , pp. 322-331
    • Beckmann, N.1    Kriegel, H.-P.2    Schneider, R.3    Seeger, B.4
  • 6
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • F. Cao, M. Ester, W. Qian, and A. Zhou, "Density-based clustering over an evolving data stream with noise," in SDM, 2006.
    • (2006) SDM
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 7
    • 36849092449 scopus 로고    scopus 로고
    • Density-based clustering for real-time stream data
    • Y. Chen and L. Tu, "Density-based clustering for real-time stream data," in KDD, 2007, pp. 133-142.
    • (2007) KDD , pp. 133-142
    • Chen, Y.1    Tu, L.2
  • 8
    • 1942450879 scopus 로고    scopus 로고
    • Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry
    • D. DeCoste, "Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry," in ICML, 2002, pp. 99-106.
    • (2002) ICML , pp. 99-106
    • Decoste, D.1
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the em algorithm," J Royal Stat. Soc., B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J Royal Stat. Soc., B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 0021615874 scopus 로고
    • R-trees: A dynamic index structure for spatial searching
    • A. Guttman, "R-trees: A dynamic index structure for spatial searching," in SIGMOD, 1984, pp. 47-57.
    • (1984) SIGMOD , pp. 47-57
    • Guttman, A.1
  • 13
    • 34547616634 scopus 로고    scopus 로고
    • Adaptive non-linear clustering in data streams
    • A. Jain, Z. Zhang, and E. Y. Chang, "Adaptive non-linear clustering in data streams," in CIKM, 2006, pp. 122-131.
    • (2006) CIKM , pp. 122-131
    • Jain, A.1    Zhang, Z.2    Chang, E.Y.3
  • 15
    • 68749087011 scopus 로고    scopus 로고
    • Harnessing the strengths of anytime algorithms for constant data streams
    • P. Kranen and T. Seidl, "Harnessing the strengths of anytime algorithms for constant data streams," DMKD J, Special Issue on Selected Papers from ECML PKDD, Vol. 19, No. 2,, pp. 245-260, 2009.
    • (2009) DMKD J, Special Issue on Selected Papers from ECML PKDD , vol.19 , Issue.2 , pp. 245-260
    • Kranen, P.1    Seidl, T.2
  • 16
    • 56249119506 scopus 로고    scopus 로고
    • Incremental clustering of dynamic data streams using connectivity based representative points
    • S. Lühr and M. Lazarescu, "Incremental clustering of dynamic data streams using connectivity based representative points," Data Knowl. Eng., vol. 68, no. 1, pp. 1-27, 2009.
    • (2009) Data Knowl. Eng. , vol.68 , Issue.1 , pp. 1-27
    • Lühr, S.1    Lazarescu, M.2
  • 18
    • 68749121246 scopus 로고    scopus 로고
    • Indexing density models for incremental learning and anytime classification on data streams
    • T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann, "Indexing density models for incremental learning and anytime classification on data streams," in EDBT, 2009.
    • (2009) EDBT
    • Seidl, T.1    Assent, I.2    Kranen, P.3    Krieger, R.4    Herrmann, J.5
  • 19
    • 33749564726 scopus 로고    scopus 로고
    • Monic: Modeling and monitoring cluster transitions
    • M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult, "Monic: modeling and monitoring cluster transitions," in KDD, 2006, pp. 706-711.
    • (2006) KDD , pp. 706-711
    • Spiliopoulou, M.1    Ntoutsi, I.2    Theodoridis, Y.3    Schult, R.4
  • 20
    • 35248892821 scopus 로고    scopus 로고
    • Olindda: A cluster-based approach for detecting novelty and concept drift in data streams
    • E. J. Spinosa, A. C. Ponce de Leon Ferreira de Carvalho, and J. Gama, "Olindda: a cluster-based approach for detecting novelty and concept drift in data streams," in SAC, 2007.
    • (2007) SAC
    • Spinosa, E.J.1    De Leon, A.C.P.2    De Carvalho, F.3    Gama, J.4
  • 21
    • 0346660758 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (sea) for large-scale classification
    • W. N. Street and Y. Kim, "A streaming ensemble algorithm (sea) for large-scale classification," in KDD, 2001.
    • (2001) KDD
    • Street, W.N.1    Kim, Y.2
  • 22
    • 38049025951 scopus 로고    scopus 로고
    • E-stream: Evolution-based technique for stream clustering
    • K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai, "E-stream: Evolution-based technique for stream clustering," in ADMA, 2007, pp. 605-615.
    • (2007) ADMA , pp. 605-615
    • Udommanetanakit, K.1    Rakthanmanon, T.2    Waiyamai, K.3
  • 23
    • 72849144638 scopus 로고    scopus 로고
    • Anytime classification using the nearest neighbor algorithm with applications to stream mining
    • K. Ueno, X. Xi, E. J. Keogh, and D.-Y. Lee, "Anytime classification using the nearest neighbor algorithm with applications to stream mining," in ICDM, 2006, pp. 623-632.
    • (2006) ICDM , pp. 623-632
    • Ueno, K.1    Xi, X.2    Keogh, E.J.3    Lee, D.-Y.4
  • 24
    • 70350600645 scopus 로고    scopus 로고
    • Streamkrimp: Detecting change in data streams
    • M. van Leeuwen and A. Siebes, "Streamkrimp: Detecting change in data streams," in ECML/PKDD, 2008.
    • (2008) ECML/PKDD
    • Leeuwen, M.V.1    Siebes, A.2
  • 26
    • 77952415079 scopus 로고    scopus 로고
    • Mining conceptdrifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han, "Mining conceptdrifting data streams using ensemble classifiers," in KDD, 2003, pp. 226-235.
    • (2003) KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 27
    • 35148836033 scopus 로고    scopus 로고
    • Classifying under computational resource constraints: Anytime classification using probabilistic estimators
    • Y. Yang, G. I.Webb, K. B. Korb, and K. M. Ting, "Classifying under computational resource constraints: anytime classification using probabilistic estimators," Machine Learning, vol. 69, no. 1, 2007.
    • (2007) Machine Learning , vol.69 , Issue.1
    • Yang, Y.1    Webb, G.I.2    Korb, K.B.3    Ting, K.M.4
  • 28
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: an efficient data clustering method for very large databases," in SIGMOD, 1996.
    • (1996) SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.