-
1
-
-
85012236181
-
A framework for clustering evolving data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for clustering evolving data streams," in VLDB, 2003.
-
(2003)
VLDB
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
2
-
-
85136074496
-
A framework for projected clustering of high dimensional data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for projected clustering of high dimensional data streams," in VLDB, 2004, pp. 852-863.
-
(2004)
VLDB
, pp. 852-863
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
85011117106
-
Anytime measures for top-k algorithms
-
B. Arai, G. Das, D. Gunopulos, and N. Koudas, "Anytime measures for top-k algorithms," in VLDB, 2007, pp. 914-925.
-
(2007)
VLDB
, pp. 914-925
-
-
Arai, B.1
Das, G.2
Gunopulos, D.3
Koudas, N.4
-
4
-
-
0034592785
-
Using the fractal dimension to cluster datasets
-
D. Barbaŕa and P. Chen, "Using the fractal dimension to cluster datasets," in KDD, 2000, pp. 260-264.
-
(2000)
KDD
, pp. 260-264
-
-
Barbaŕa, D.1
Chen, P.2
-
5
-
-
0025447750
-
The R*-tree: An efficient and robust access method for points and rectangles
-
N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, "The R*-tree: an efficient and robust access method for points and rectangles," in SIGMOD, 1990, pp. 322-331.
-
(1990)
SIGMOD
, pp. 322-331
-
-
Beckmann, N.1
Kriegel, H.-P.2
Schneider, R.3
Seeger, B.4
-
6
-
-
33745434639
-
Density-based clustering over an evolving data stream with noise
-
F. Cao, M. Ester, W. Qian, and A. Zhou, "Density-based clustering over an evolving data stream with noise," in SDM, 2006.
-
(2006)
SDM
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
7
-
-
36849092449
-
Density-based clustering for real-time stream data
-
Y. Chen and L. Tu, "Density-based clustering for real-time stream data," in KDD, 2007, pp. 133-142.
-
(2007)
KDD
, pp. 133-142
-
-
Chen, Y.1
Tu, L.2
-
8
-
-
1942450879
-
Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry
-
D. DeCoste, "Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry," in ICML, 2002, pp. 99-106.
-
(2002)
ICML
, pp. 99-106
-
-
Decoste, D.1
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the em algorithm," J Royal Stat. Soc., B, vol. 39, no. 1, pp. 1-38, 1977.
-
(1977)
J Royal Stat. Soc., B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
11
-
-
0021615874
-
R-trees: A dynamic index structure for spatial searching
-
A. Guttman, "R-trees: A dynamic index structure for spatial searching," in SIGMOD, 1984, pp. 47-57.
-
(1984)
SIGMOD
, pp. 47-57
-
-
Guttman, A.1
-
13
-
-
34547616634
-
Adaptive non-linear clustering in data streams
-
A. Jain, Z. Zhang, and E. Y. Chang, "Adaptive non-linear clustering in data streams," in CIKM, 2006, pp. 122-131.
-
(2006)
CIKM
, pp. 122-131
-
-
Jain, A.1
Zhang, Z.2
Chang, E.Y.3
-
15
-
-
68749087011
-
Harnessing the strengths of anytime algorithms for constant data streams
-
P. Kranen and T. Seidl, "Harnessing the strengths of anytime algorithms for constant data streams," DMKD J, Special Issue on Selected Papers from ECML PKDD, Vol. 19, No. 2,, pp. 245-260, 2009.
-
(2009)
DMKD J, Special Issue on Selected Papers from ECML PKDD
, vol.19
, Issue.2
, pp. 245-260
-
-
Kranen, P.1
Seidl, T.2
-
16
-
-
56249119506
-
Incremental clustering of dynamic data streams using connectivity based representative points
-
S. Lühr and M. Lazarescu, "Incremental clustering of dynamic data streams using connectivity based representative points," Data Knowl. Eng., vol. 68, no. 1, pp. 1-27, 2009.
-
(2009)
Data Knowl. Eng.
, vol.68
, Issue.1
, pp. 1-27
-
-
Lühr, S.1
Lazarescu, M.2
-
17
-
-
0036203413
-
Streaming-data algorithms for high-quality clustering
-
L. O'Callaghan, A. Meyerson, R. Motwani, N. Mishra, and S. Guha, "Streaming-data algorithms for high-quality clustering," in ICDE, 2002.
-
(2002)
ICDE
-
-
O'Callaghan, L.1
Meyerson, A.2
Motwani, R.3
Mishra, N.4
Guha, S.5
-
18
-
-
68749121246
-
Indexing density models for incremental learning and anytime classification on data streams
-
T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann, "Indexing density models for incremental learning and anytime classification on data streams," in EDBT, 2009.
-
(2009)
EDBT
-
-
Seidl, T.1
Assent, I.2
Kranen, P.3
Krieger, R.4
Herrmann, J.5
-
19
-
-
33749564726
-
Monic: Modeling and monitoring cluster transitions
-
M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult, "Monic: modeling and monitoring cluster transitions," in KDD, 2006, pp. 706-711.
-
(2006)
KDD
, pp. 706-711
-
-
Spiliopoulou, M.1
Ntoutsi, I.2
Theodoridis, Y.3
Schult, R.4
-
20
-
-
35248892821
-
Olindda: A cluster-based approach for detecting novelty and concept drift in data streams
-
E. J. Spinosa, A. C. Ponce de Leon Ferreira de Carvalho, and J. Gama, "Olindda: a cluster-based approach for detecting novelty and concept drift in data streams," in SAC, 2007.
-
(2007)
SAC
-
-
Spinosa, E.J.1
De Leon, A.C.P.2
De Carvalho, F.3
Gama, J.4
-
21
-
-
0346660758
-
A streaming ensemble algorithm (sea) for large-scale classification
-
W. N. Street and Y. Kim, "A streaming ensemble algorithm (sea) for large-scale classification," in KDD, 2001.
-
(2001)
KDD
-
-
Street, W.N.1
Kim, Y.2
-
22
-
-
38049025951
-
E-stream: Evolution-based technique for stream clustering
-
K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai, "E-stream: Evolution-based technique for stream clustering," in ADMA, 2007, pp. 605-615.
-
(2007)
ADMA
, pp. 605-615
-
-
Udommanetanakit, K.1
Rakthanmanon, T.2
Waiyamai, K.3
-
23
-
-
72849144638
-
Anytime classification using the nearest neighbor algorithm with applications to stream mining
-
K. Ueno, X. Xi, E. J. Keogh, and D.-Y. Lee, "Anytime classification using the nearest neighbor algorithm with applications to stream mining," in ICDM, 2006, pp. 623-632.
-
(2006)
ICDM
, pp. 623-632
-
-
Ueno, K.1
Xi, X.2
Keogh, E.J.3
Lee, D.-Y.4
-
24
-
-
70350600645
-
Streamkrimp: Detecting change in data streams
-
M. van Leeuwen and A. Siebes, "Streamkrimp: Detecting change in data streams," in ECML/PKDD, 2008.
-
(2008)
ECML/PKDD
-
-
Leeuwen, M.V.1
Siebes, A.2
-
25
-
-
68749114548
-
A waveletbased anytime algorithm for k-means clustering of time series
-
M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos, "A waveletbased anytime algorithm for k-means clustering of time series," in WS Clust. High Dim. Data & App. (at ICDM), 2003.
-
(2003)
WS Clust. High Dim. Data & App. (At ICDM)
-
-
Vlachos, M.1
Lin, J.2
Keogh, E.3
Gunopulos, D.4
-
26
-
-
77952415079
-
Mining conceptdrifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. S. Yu, and J. Han, "Mining conceptdrifting data streams using ensemble classifiers," in KDD, 2003, pp. 226-235.
-
(2003)
KDD
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
27
-
-
35148836033
-
Classifying under computational resource constraints: Anytime classification using probabilistic estimators
-
Y. Yang, G. I.Webb, K. B. Korb, and K. M. Ting, "Classifying under computational resource constraints: anytime classification using probabilistic estimators," Machine Learning, vol. 69, no. 1, 2007.
-
(2007)
Machine Learning
, vol.69
, Issue.1
-
-
Yang, Y.1
Webb, G.I.2
Korb, K.B.3
Ting, K.M.4
-
28
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: an efficient data clustering method for very large databases," in SIGMOD, 1996.
-
(1996)
SIGMOD
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|