메뉴 건너뛰기




Volumn , Issue , 2009, Pages 278-287

Semi-naive exploitation of one-dependence estimators

Author keywords

Bayesian classifier; One dependence estimator; Semi naive Bayes

Indexed keywords

BAYESIAN CLASSIFIER; EXCELLENT PERFORMANCE; HIGH ORDER; HIGHER ORDER; LOW ORDER; PROBABILITY ESTIMATE; PROBABILITY ESTIMATION; SEMI-NAIVE BAYES; TRAINING SAMPLE;

EID: 77951157586     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2009.64     Document Type: Conference Paper
Times cited : (12)

References (36)
  • 8
    • 34249832377 scopus 로고
    • Bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E. Herskovits. Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-347, 1992.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 13
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. German, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Computation, 4(1):1-58, 1992.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • German, S.1    Bienenstock, E.2    Doursat, R.3
  • 17
  • 21
    • 0141607834 scopus 로고    scopus 로고
    • The representational power of discrete Bayesian networks
    • C. X. Ling and H. Zhang. The representational power of discrete Bayesian networks. Journal of Machine Learning Research, 3:709-721, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 709-721
    • Ling, C.X.1    Zhang, H.2
  • 22
    • 0032328510 scopus 로고    scopus 로고
    • On the complexity of a practical interior-point method
    • S. G. Nash and A. Sofer. On the complexity of a practical interior-point method. SIAM Journal on Optimization, 8(3):833-849, 1998.
    • (1998) SIAM Journal on Optimization , vol.8 , Issue.3 , pp. 833-849
    • Nash, S.G.1    Sofer, A.2
  • 24
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative bayesian network classifiers and logistic regression
    • T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri. On discriminative bayesian network classifiers and logistic regression. Machine Learning, 59(3):267-296, 2005.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grünwald, P.3    Myllymäki, P.4    Tirri, H.5
  • 28
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining Boosting and Wagging
    • G. I. Webb. Multiboosting: A technique for combining Boosting and Wagging. Machine Learning, 40(2):159-196, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 29
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • G. I. Webb, J. Boughton, and Z. Wang. Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning, 58(1):5-24, 2005.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3
  • 33
    • 84884333463 scopus 로고    scopus 로고
    • A comparative study of semi-naive Bayes methods in classification learning
    • Sydney, Australia
    • F. Zheng and G. I. Webb. A comparative study of semi-naive Bayes methods in classification learning. In Proceedings of the 4th Australasian Data Mining Conference, pages 141- 156, Sydney, Australia, 2005.
    • (2005) Proceedings of the 4th Australasian Data Mining Conference , pp. 141-156
    • Zheng, F.1    Webb, G.I.2
  • 35
    • 38049141398 scopus 로고    scopus 로고
    • Finding the right family: Parent and child selection for averaged one-dependence estimators
    • Warsaw, Poland
    • F. Zheng and G. I. Webb. Finding the right family: Parent and child selection for averaged one-dependence estimators. In Proceedings of the 18th European Conference on Machine Learning, pages 490-501, Warsaw, Poland, 2007.
    • (2007) Proceedings of the 18th European Conference on Machine Learning , pp. 490-501
    • Zheng, F.1    Webb, G.I.2
  • 36
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Z. Zheng and G. I. Webb. Lazy learning of Bayesian rules. Machine Learning, 41(1):53-84, 2000.
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.