-
3
-
-
14344255621
-
Ensemble Selection from Libraries of Models
-
R. Caruana, A. Niculescu, G. Crew, and A. Ksikes, "Ensemble Selection from Libraries of Models," Proc. 21st Int'l Conf. Machine Learning, 2004.
-
(2004)
Proc. 21st Int'l Conf. Machine Learning
-
-
Caruana, R.1
Niculescu, A.2
Crew, G.3
Ksikes, A.4
-
4
-
-
0036532571
-
Switching between Selection and Fusion in Combining Classifiers: An Experiment
-
L. Kuncheva, "Switching between Selection and Fusion in Combining Classifiers: An Experiment," IEEE Trans. Systems, Man, and Cybernetics, vol. 32, no. 2, pp. 146-156, 2002.
-
(2002)
IEEE Trans. Systems, Man, and Cybernetics
, vol.32
, Issue.2
, pp. 146-156
-
-
Kuncheva, L.1
-
5
-
-
33947231519
-
A Comparison of Decision Tree Ensemble Creation Techniques
-
Jan
-
R.E. Banfield, L.O. Hall, K.W. Bowyer, and W.P. Kegelmeyer, "A Comparison of Decision Tree Ensemble Creation Techniques," IEEE Trans. Pattern Analysis and Machine Learning, vol. 29, no. 1, pp. 173-180, Jan. 2007.
-
(2007)
IEEE Trans. Pattern Analysis and Machine Learning
, vol.29
, Issue.1
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
6
-
-
0002610991
-
Learning Augmented Bayesian Classifiers: A Comparison of Distribution-Based and Classification-Based Approaches
-
E.J. Keogh and M.J. Pazzani, "Learning Augmented Bayesian Classifiers: A Comparison of Distribution-Based and Classification-Based Approaches," Proc. Int'l Workshop Artificial Intelligence and Statistics, pp. 225-230, 1999.
-
(1999)
Proc. Int'l Workshop Artificial Intelligence and Statistics
, pp. 225-230
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
7
-
-
21244461917
-
Learning the Structure of Augmented Bayesian Classifiers
-
E.J. Keogh and M.J. Pazzani, "Learning the Structure of Augmented Bayesian Classifiers," Int'l J. Artificial Intelligence Tools, vol. 11, no. 40, pp. 587-601, 2002.
-
(2002)
Int'l J. Artificial Intelligence Tools
, vol.11
, Issue.40
, pp. 587-601
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
8
-
-
0001929348
-
Assistant 86: A Knowledge-Elicitation Tool for Sophisticated Users
-
B. Cestnik, I. Kononenko, and I. Bratko, "Assistant 86: A Knowledge-Elicitation Tool for Sophisticated Users," Proc. Second European Working Session on Learning (ESWL '87), pp. 31-45, 1987.
-
(1987)
Proc. Second European Working Session on Learning (ESWL '87)
, pp. 31-45
-
-
Cestnik, B.1
Kononenko, I.2
Bratko, I.3
-
9
-
-
34249966007
-
The CN2 Induction Algorithm
-
P. Clark and T. Niblett, "The CN2 Induction Algorithm," Machine Learning, vol. 3, pp. 261-283, 1989.
-
(1989)
Machine Learning
, vol.3
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
11
-
-
0003112380
-
Comparison of Inductive and Naive Bayesian Learning Approaches to Automatic Knowledge Acquisition
-
chapter, IOS Press
-
I. Kononenko, "Comparison of Inductive and Naive Bayesian Learning Approaches to Automatic Knowledge Acquisition," Current Trends in Knowledge Acquisition, chapter, IOS Press, 1990.
-
(1990)
Current Trends in Knowledge Acquisition
-
-
Kononenko, I.1
-
12
-
-
0026992322
-
An Analysis of Bayesian Classifiers
-
P. Langley, W. Iba, and K. Thompson, "An Analysis of Bayesian Classifiers," Proc. 10th Nat'l Conf. Artificial Intelligence (AAAI '92), pp. 223-228, 1992.
-
(1992)
Proc. 10th Nat'l Conf. Artificial Intelligence (AAAI '92)
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
13
-
-
0002419948
-
Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier
-
P. Domingos and M.J. Pazzani, "Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier," Proc. 13th Int'l Conf Machine Learning (ICML '96), pp. 105-112, 1996.
-
(1996)
Proc. 13th Int'l Conf Machine Learning (ICML '96)
, pp. 105-112
-
-
Domingos, P.1
Pazzani, M.J.2
-
14
-
-
0031269184
-
On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
-
P. Domingos and M.J. Pazzani, "On the Optimality of the Simple Bayesian Classifier under Zero-One Loss," Machine Learning, vol. 29, pp. 103-130, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.J.2
-
15
-
-
33846559877
-
The Learnability of Naive Bayes
-
H. Zhang, C.X. Ling, and Z. Zhao, "The Learnability of Naive Bayes," Proc. Canadian Artificial Intelligence Conf., pp. 432-441, 2000.
-
(2000)
Proc. Canadian Artificial Intelligence Conf
, pp. 432-441
-
-
Zhang, H.1
Ling, C.X.2
Zhao, Z.3
-
16
-
-
0031276011
-
Bayesian Network Classifiers
-
N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian Network Classifiers," Machine Learning, vol. 29, no. 2, pp. 131-163, 1997.
-
(1997)
Machine Learning
, vol.29
, Issue.2
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
25
-
-
84930245350
-
SNNB: A Selective Neighborhood Based Naive Bayes for Lazy Learning
-
Z. Xie, W. Hsu, Z. Liu, and M.L. Lee, "SNNB: A Selective Neighborhood Based Naive Bayes for Lazy Learning," Proc. Sixth Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining (PAKDD '02), pp. 104-114, 2002.
-
(2002)
Proc. Sixth Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining (PAKDD '02)
, pp. 104-114
-
-
Xie, Z.1
Hsu, W.2
Liu, Z.3
Lee, M.L.4
-
26
-
-
0034301677
-
Lazy Learning of Bayesian Rules
-
Z. Zheng and G.I. Webb, "Lazy Learning of Bayesian Rules," Machine Learning, vol. 41, no. 1, pp. 53-84, 2000.
-
(2000)
Machine Learning
, vol.41
, Issue.1
, pp. 53-84
-
-
Zheng, Z.1
Webb, G.I.2
-
27
-
-
0013386826
-
Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees
-
Z. Zheng, G.I. Webb, and K.M. Ting, "Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees," Proc. 16th Int'l Conf. Machine Learning (ICML '99), pp. 493-502, 1999.
-
(1999)
Proc. 16th Int'l Conf. Machine Learning (ICML '99)
, pp. 493-502
-
-
Zheng, Z.1
Webb, G.I.2
Ting, K.M.3
-
30
-
-
14844351034
-
Not So Naive Bayes: Aggregating One-Dependence Estimators
-
Jan
-
G.I. Webb, J. Boughton, and Z. Wang, "Not So Naive Bayes: Aggregating One-Dependence Estimators," Machine Learning, vol. 58, no. 1, pp. 5-24, Jan. 2005.
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.2
Wang, Z.3
-
32
-
-
33750301911
-
Mining Housekeeping Genes with a Naive Bayes Classifier,
-
MSc thesis, School of Informatics, Univ. of Edinburgh
-
L. De Ferrari, "Mining Housekeeping Genes with a Naive Bayes Classifier," MSc thesis, School of Informatics, Univ. of Edinburgh, 2005.
-
(2005)
-
-
De Ferrari, L.1
-
33
-
-
35649000591
-
Improving Throughput and Reliability of Peptide Identifications through Spectrum Quality Evaluation
-
K. Flikka, L. Martens, J. Vandekerckhove, K. Gevaert, and I. Eidhammeri, "Improving Throughput and Reliability of Peptide Identifications through Spectrum Quality Evaluation," Proc. Ninth Ann. Int'l Conf. Research in Computational Molecular Biology (RECOMB '05), 2005.
-
(2005)
Proc. Ninth Ann. Int'l Conf. Research in Computational Molecular Biology (RECOMB '05)
-
-
Flikka, K.1
Martens, L.2
Vandekerckhove, J.3
Gevaert, K.4
Eidhammeri, I.5
-
34
-
-
33750353838
-
Classifying Requirements: Towards a More Rigorous Analysis of Natural-Language Specifications
-
A.P. Nikora, "Classifying Requirements: Towards a More Rigorous Analysis of Natural-Language Specifications," Proc. 16th IEEE Int'l Symp. Software Reliability Eng. (ISSRE '05), pp. 291-300, 2005.
-
(2005)
Proc. 16th IEEE Int'l Symp. Software Reliability Eng. (ISSRE '05)
, pp. 291-300
-
-
Nikora, A.P.1
-
35
-
-
33745585371
-
Ensemble Selection for Superparent-One-Dependence Estimators
-
Y. Yang, K. Korb, K.M. Ting, and G.I. Webb, "Ensemble Selection for Superparent-One-Dependence Estimators," Proc. 18th Australian Joint Conf. Artificial Intelligence, 2005.
-
(2005)
Proc. 18th Australian Joint Conf. Artificial Intelligence
-
-
Yang, Y.1
Korb, K.2
Ting, K.M.3
Webb, G.I.4
-
37
-
-
23844497473
-
Logitboost of Simple Bayesian Classifier
-
S.B. Kotsiantis and P.E. Pintelas, "Logitboost of Simple Bayesian Classifier," Informatica, vol. 29, pp. 53-59, 2005.
-
(2005)
Informatica
, vol.29
, pp. 53-59
-
-
Kotsiantis, S.B.1
Pintelas, P.E.2
-
38
-
-
29344462495
-
Hidden Naive Bayes
-
H. Zhang, L. Jiang, and J. Su, "Hidden Naive Bayes," Proc. 20th Nat'l Conf. Artificial Intelligence (AAAI '05), pp. 919-924, 2005.
-
(2005)
Proc. 20th Nat'l Conf. Artificial Intelligence (AAAI '05)
, pp. 919-924
-
-
Zhang, H.1
Jiang, L.2
Su, J.3
-
39
-
-
33750402176
-
A New Representation for Protein Secondary Structure Prediction Based on Frequent Patterns
-
F. Birzele and S. Kramer, "A New Representation for Protein Secondary Structure Prediction Based on Frequent Patterns," Bioinformatics, vol. 22, no. 21, pp. 2628-2634, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.21
, pp. 2628-2634
-
-
Birzele, F.1
Kramer, S.2
-
41
-
-
31844432421
-
Augmenting Naive Bayes for Ranking
-
H. Zhang, L. Jiang, and J. Su, "Augmenting Naive Bayes for Ranking," Proc. 22nd Int'l Conf. Machine Learning (ICML '05), pp. 1020-1027, 2005.
-
(2005)
Proc. 22nd Int'l Conf. Machine Learning (ICML '05)
, pp. 1020-1027
-
-
Zhang, H.1
Jiang, L.2
Su, J.3
-
42
-
-
33750897026
-
Application of Uncertainty Measures on Credal Sets on the Naive Bayesian Classifier
-
J. Abellan, "Application of Uncertainty Measures on Credal Sets on the Naive Bayesian Classifier," Int'l J. General Systems, vol. 35, no. 6, pp. 675-686, 2006.
-
(2006)
Int'l J. General Systems
, vol.35
, Issue.6
, pp. 675-686
-
-
Abellan, J.1
-
43
-
-
35649024444
-
Experimental Analysis on Severe Head Injury Outcome Prediction - A Preliminary Study
-
Technical Report TRD9/06, School of Computing, Nat'l Univ. of Singapore
-
H. Yin, G. Li, T.Y. Leong, V. Kuralmani, H. Pang, B.T. Ang, K.K. Lee, and I. Ng, "Experimental Analysis on Severe Head Injury Outcome Prediction - A Preliminary Study," Technical Report TRD9/06, School of Computing, Nat'l Univ. of Singapore.
-
-
-
Yin, H.1
Li, G.2
Leong, T.Y.3
Kuralmani, V.4
Pang, H.5
Ang, B.T.6
Lee, K.K.7
Ng, I.8
-
45
-
-
34547509841
-
A Novel One-dependence Estimator Based on Multi-Parents
-
D. Zeng, S. Zhang, Z. Cai, S. Jiang, and L. Jiang, "A Novel One-dependence Estimator Based on Multi-Parents," Proc. Sixth Int'l Conf. Intelligent Systems Design and Applications (ISDA '06), pp. 639-643, 2006.
-
(2006)
Proc. Sixth Int'l Conf. Intelligent Systems Design and Applications (ISDA '06)
, pp. 639-643
-
-
Zeng, D.1
Zhang, S.2
Cai, Z.3
Jiang, S.4
Jiang, L.5
-
46
-
-
35648936673
-
Naive Bayesian Learning from Structural Data,
-
PhD dissertation, Dipartimento di Informatica, Univ. of Bari, Italy
-
M. Ceci, "Naive Bayesian Learning from Structural Data," PhD dissertation, Dipartimento di Informatica, Univ. of Bari, Italy, 2005.
-
(2005)
-
-
Ceci, M.1
-
47
-
-
33750313997
-
To Select or to Weigh: A Comparative Study of Model Selection and Model Weighing for SPODE Ensembles
-
Y. Yang, G. Webb, J. Cerquides, K. Korb, J. Boughton, and K.M. Ting, "To Select or to Weigh: A Comparative Study of Model Selection and Model Weighing for SPODE Ensembles," Proc. 17th European Conf. Machine Learning (ECML '06), pp. 533-544, 2006.
-
(2006)
Proc. 17th European Conf. Machine Learning (ECML '06)
, pp. 533-544
-
-
Yang, Y.1
Webb, G.2
Cerquides, J.3
Korb, K.4
Boughton, J.5
Ting, K.M.6
-
48
-
-
0016355478
-
A New Look at the Statistical Model Identification
-
H. Akaike, "A New Look at the Statistical Model Identification, " IEEE Trans. Automatic Control, vol. 19, pp. 716-723, 1974.
-
(1974)
IEEE Trans. Automatic Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
49
-
-
0000120766
-
Estimating the Dimension of a Model
-
G. Schwarz, "Estimating the Dimension of a Model," Annals of Statistics, vol. 6, pp. 461-465, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-465
-
-
Schwarz, G.1
-
50
-
-
0008564212
-
Learning Bayesian Belief Networks Based on the MDL Principle: An Efficient Algorithm Using the Branch and Bound Technique
-
J. Suzuki, "Learning Bayesian Belief Networks Based on the MDL Principle: An Efficient Algorithm Using the Branch and Bound Technique," Proc. 13th Int'l Conf. Machine Learning (ICML '96), pp. 463-470, 1996.
-
(1996)
Proc. 13th Int'l Conf. Machine Learning (ICML '96)
, pp. 463-470
-
-
Suzuki, J.1
-
52
-
-
34249832377
-
A Bayesian Method for the Induction of Probabilistic Networks from Data
-
G.F. Cooper and E. Herskovits, "A Bayesian Method for the Induction of Probabilistic Networks from Data," Machine Learning, vol. 9, pp. 309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
53
-
-
84856043672
-
A Mathematical Theory of Communication
-
C.E. Shannon, "A Mathematical Theory of Communication," Bell System Technical J., vol. 27, no. 3, pp. 379-423, 1948.
-
(1948)
Bell System Technical J
, vol.27
, Issue.3
, pp. 379-423
-
-
Shannon, C.E.1
-
54
-
-
0001259111
-
Bayesian Model Averaging: A Tutorial
-
J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky, "Bayesian Model Averaging: A Tutorial," Statistical Science, vol. 14, no. 4, pp. 382-417, 1999.
-
(1999)
Statistical Science
, vol.14
, Issue.4
, pp. 382-417
-
-
Hoeting, J.A.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.T.4
-
56
-
-
33645026135
-
Introduction to Optimization
-
Springer
-
P. Pedregal, "Introduction to Optimization," Texts in Applied Math., Springer, vol. 46, 2004.
-
(2004)
Texts in Applied Math
, vol.46
-
-
Pedregal, P.1
-
60
-
-
0003408496
-
-
Dept. of Information and Computer Science, Univ. of California, Irvine
-
C.L. Blake and C.J. Merz, "UCI Repository of Machine Learning Databases," Dept. of Information and Computer Science, Univ. of California, Irvine, http://www.ics.uci.edu/-mlearn/mlrepository.html, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
61
-
-
0034247206
-
Multiboosting: A Technique for Combining Boosting and Wagging
-
G.I. Webb, "Multiboosting: A Technique for Combining Boosting and Wagging," Machine Learning, vol. 40, no. 2, pp. 159-196, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
62
-
-
0003619255
-
Bias, Variance and Arcing Classifiers
-
Technical Report 460, Statistics Dept, Univ. of California, Berkeley
-
L. Breiman, "Bias, Variance and Arcing Classifiers," Technical Report 460, Statistics Dept., Univ. of California, Berkeley, 1996.
-
(1996)
-
-
Breiman, L.1
-
63
-
-
21744462998
-
On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality
-
J.H. Friedman, "On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality," Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 55-77, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.1
, pp. 55-77
-
-
Friedman, J.H.1
-
66
-
-
35648990726
-
Introduction to the Practice of Statistics
-
fourth ed
-
D.S. Moore and G.P. McCabe, Introduction to the Practice of Statistics, fourth ed. Michelle Julet, 2002.
-
(2002)
Michelle Julet
-
-
Moore, D.S.1
McCabe, G.P.2
-
67
-
-
84944811700
-
The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance
-
M. Friedman, "The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance," J. Am. Statistical Assoc., vol. 32, pp. 675-701, 1937.
-
(1937)
J. Am. Statistical Assoc
, vol.32
, pp. 675-701
-
-
Friedman, M.1
-
68
-
-
0001837148
-
A Comparison of Alternative Tests of Significance for the Problem of m Rankings
-
M. Friedman, "A Comparison of Alternative Tests of Significance for the Problem of m Rankings," Annals of Math. Statistics, vol. 11, pp. 86-92, 1940.
-
(1940)
Annals of Math. Statistics
, vol.11
, pp. 86-92
-
-
Friedman, M.1
-
69
-
-
29644438050
-
Statistical Comparisons of Classifiers over Multiple Data Sets
-
J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006.
-
(2006)
J. Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
72
-
-
35649009111
-
Learning Flexible Causal Models with MML,
-
PhD dissertation, Monash Univ
-
R. O'Donnell, "Learning Flexible Causal Models with MML," PhD dissertation, Monash Univ., 2007.
-
(2007)
-
-
O'Donnell, R.1
|