메뉴 건너뛰기




Volumn 19, Issue 12, 2007, Pages 1652-1665

To select or to weigh: A comparative study of linear combination schemes for superparent-one-dependence estimators

Author keywords

Bayesian probabilistic learning; Classification learning; Ensemble learning; Model selection; Model weighing; Superparent one dependence estimator (SPODE)

Indexed keywords

BAYESIAN PROBABILISTIC LEARNING; CLASSIFICATION LEARNING; ENSEMBLE LEARNING; MODEL SELECTION; MODEL WEIGHING; SUPERPARENT-ONE-DEPENDENCE ESTIMATOR (SPODE);

EID: 35648962940     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2007.190650     Document Type: Conference Paper
Times cited : (42)

References (72)
  • 4
    • 0036532571 scopus 로고    scopus 로고
    • Switching between Selection and Fusion in Combining Classifiers: An Experiment
    • L. Kuncheva, "Switching between Selection and Fusion in Combining Classifiers: An Experiment," IEEE Trans. Systems, Man, and Cybernetics, vol. 32, no. 2, pp. 146-156, 2002.
    • (2002) IEEE Trans. Systems, Man, and Cybernetics , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.1
  • 6
    • 0002610991 scopus 로고    scopus 로고
    • Learning Augmented Bayesian Classifiers: A Comparison of Distribution-Based and Classification-Based Approaches
    • E.J. Keogh and M.J. Pazzani, "Learning Augmented Bayesian Classifiers: A Comparison of Distribution-Based and Classification-Based Approaches," Proc. Int'l Workshop Artificial Intelligence and Statistics, pp. 225-230, 1999.
    • (1999) Proc. Int'l Workshop Artificial Intelligence and Statistics , pp. 225-230
    • Keogh, E.J.1    Pazzani, M.J.2
  • 7
    • 21244461917 scopus 로고    scopus 로고
    • Learning the Structure of Augmented Bayesian Classifiers
    • E.J. Keogh and M.J. Pazzani, "Learning the Structure of Augmented Bayesian Classifiers," Int'l J. Artificial Intelligence Tools, vol. 11, no. 40, pp. 587-601, 2002.
    • (2002) Int'l J. Artificial Intelligence Tools , vol.11 , Issue.40 , pp. 587-601
    • Keogh, E.J.1    Pazzani, M.J.2
  • 9
    • 34249966007 scopus 로고
    • The CN2 Induction Algorithm
    • P. Clark and T. Niblett, "The CN2 Induction Algorithm," Machine Learning, vol. 3, pp. 261-283, 1989.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 11
    • 0003112380 scopus 로고
    • Comparison of Inductive and Naive Bayesian Learning Approaches to Automatic Knowledge Acquisition
    • chapter, IOS Press
    • I. Kononenko, "Comparison of Inductive and Naive Bayesian Learning Approaches to Automatic Knowledge Acquisition," Current Trends in Knowledge Acquisition, chapter, IOS Press, 1990.
    • (1990) Current Trends in Knowledge Acquisition
    • Kononenko, I.1
  • 13
    • 0002419948 scopus 로고    scopus 로고
    • Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier
    • P. Domingos and M.J. Pazzani, "Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier," Proc. 13th Int'l Conf Machine Learning (ICML '96), pp. 105-112, 1996.
    • (1996) Proc. 13th Int'l Conf Machine Learning (ICML '96) , pp. 105-112
    • Domingos, P.1    Pazzani, M.J.2
  • 14
    • 0031269184 scopus 로고    scopus 로고
    • On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
    • P. Domingos and M.J. Pazzani, "On the Optimality of the Simple Bayesian Classifier under Zero-One Loss," Machine Learning, vol. 29, pp. 103-130, 1997.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.J.2
  • 16
  • 26
    • 0034301677 scopus 로고    scopus 로고
    • Lazy Learning of Bayesian Rules
    • Z. Zheng and G.I. Webb, "Lazy Learning of Bayesian Rules," Machine Learning, vol. 41, no. 1, pp. 53-84, 2000.
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2
  • 27
    • 0013386826 scopus 로고    scopus 로고
    • Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees
    • Z. Zheng, G.I. Webb, and K.M. Ting, "Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees," Proc. 16th Int'l Conf. Machine Learning (ICML '99), pp. 493-502, 1999.
    • (1999) Proc. 16th Int'l Conf. Machine Learning (ICML '99) , pp. 493-502
    • Zheng, Z.1    Webb, G.I.2    Ting, K.M.3
  • 30
    • 14844351034 scopus 로고    scopus 로고
    • Not So Naive Bayes: Aggregating One-Dependence Estimators
    • Jan
    • G.I. Webb, J. Boughton, and Z. Wang, "Not So Naive Bayes: Aggregating One-Dependence Estimators," Machine Learning, vol. 58, no. 1, pp. 5-24, Jan. 2005.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3
  • 32
    • 33750301911 scopus 로고    scopus 로고
    • Mining Housekeeping Genes with a Naive Bayes Classifier,
    • MSc thesis, School of Informatics, Univ. of Edinburgh
    • L. De Ferrari, "Mining Housekeeping Genes with a Naive Bayes Classifier," MSc thesis, School of Informatics, Univ. of Edinburgh, 2005.
    • (2005)
    • De Ferrari, L.1
  • 34
    • 33750353838 scopus 로고    scopus 로고
    • Classifying Requirements: Towards a More Rigorous Analysis of Natural-Language Specifications
    • A.P. Nikora, "Classifying Requirements: Towards a More Rigorous Analysis of Natural-Language Specifications," Proc. 16th IEEE Int'l Symp. Software Reliability Eng. (ISSRE '05), pp. 291-300, 2005.
    • (2005) Proc. 16th IEEE Int'l Symp. Software Reliability Eng. (ISSRE '05) , pp. 291-300
    • Nikora, A.P.1
  • 37
    • 23844497473 scopus 로고    scopus 로고
    • Logitboost of Simple Bayesian Classifier
    • S.B. Kotsiantis and P.E. Pintelas, "Logitboost of Simple Bayesian Classifier," Informatica, vol. 29, pp. 53-59, 2005.
    • (2005) Informatica , vol.29 , pp. 53-59
    • Kotsiantis, S.B.1    Pintelas, P.E.2
  • 39
    • 33750402176 scopus 로고    scopus 로고
    • A New Representation for Protein Secondary Structure Prediction Based on Frequent Patterns
    • F. Birzele and S. Kramer, "A New Representation for Protein Secondary Structure Prediction Based on Frequent Patterns," Bioinformatics, vol. 22, no. 21, pp. 2628-2634, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.21 , pp. 2628-2634
    • Birzele, F.1    Kramer, S.2
  • 42
    • 33750897026 scopus 로고    scopus 로고
    • Application of Uncertainty Measures on Credal Sets on the Naive Bayesian Classifier
    • J. Abellan, "Application of Uncertainty Measures on Credal Sets on the Naive Bayesian Classifier," Int'l J. General Systems, vol. 35, no. 6, pp. 675-686, 2006.
    • (2006) Int'l J. General Systems , vol.35 , Issue.6 , pp. 675-686
    • Abellan, J.1
  • 43
    • 35649024444 scopus 로고    scopus 로고
    • Experimental Analysis on Severe Head Injury Outcome Prediction - A Preliminary Study
    • Technical Report TRD9/06, School of Computing, Nat'l Univ. of Singapore
    • H. Yin, G. Li, T.Y. Leong, V. Kuralmani, H. Pang, B.T. Ang, K.K. Lee, and I. Ng, "Experimental Analysis on Severe Head Injury Outcome Prediction - A Preliminary Study," Technical Report TRD9/06, School of Computing, Nat'l Univ. of Singapore.
    • Yin, H.1    Li, G.2    Leong, T.Y.3    Kuralmani, V.4    Pang, H.5    Ang, B.T.6    Lee, K.K.7    Ng, I.8
  • 46
    • 35648936673 scopus 로고    scopus 로고
    • Naive Bayesian Learning from Structural Data,
    • PhD dissertation, Dipartimento di Informatica, Univ. of Bari, Italy
    • M. Ceci, "Naive Bayesian Learning from Structural Data," PhD dissertation, Dipartimento di Informatica, Univ. of Bari, Italy, 2005.
    • (2005)
    • Ceci, M.1
  • 48
    • 0016355478 scopus 로고
    • A New Look at the Statistical Model Identification
    • H. Akaike, "A New Look at the Statistical Model Identification, " IEEE Trans. Automatic Control, vol. 19, pp. 716-723, 1974.
    • (1974) IEEE Trans. Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 49
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • G. Schwarz, "Estimating the Dimension of a Model," Annals of Statistics, vol. 6, pp. 461-465, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-465
    • Schwarz, G.1
  • 50
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian Belief Networks Based on the MDL Principle: An Efficient Algorithm Using the Branch and Bound Technique
    • J. Suzuki, "Learning Bayesian Belief Networks Based on the MDL Principle: An Efficient Algorithm Using the Branch and Bound Technique," Proc. 13th Int'l Conf. Machine Learning (ICML '96), pp. 463-470, 1996.
    • (1996) Proc. 13th Int'l Conf. Machine Learning (ICML '96) , pp. 463-470
    • Suzuki, J.1
  • 52
    • 34249832377 scopus 로고
    • A Bayesian Method for the Induction of Probabilistic Networks from Data
    • G.F. Cooper and E. Herskovits, "A Bayesian Method for the Induction of Probabilistic Networks from Data," Machine Learning, vol. 9, pp. 309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 53
    • 84856043672 scopus 로고
    • A Mathematical Theory of Communication
    • C.E. Shannon, "A Mathematical Theory of Communication," Bell System Technical J., vol. 27, no. 3, pp. 379-423, 1948.
    • (1948) Bell System Technical J , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.E.1
  • 56
    • 33645026135 scopus 로고    scopus 로고
    • Introduction to Optimization
    • Springer
    • P. Pedregal, "Introduction to Optimization," Texts in Applied Math., Springer, vol. 46, 2004.
    • (2004) Texts in Applied Math , vol.46
    • Pedregal, P.1
  • 60
    • 0003408496 scopus 로고    scopus 로고
    • Dept. of Information and Computer Science, Univ. of California, Irvine
    • C.L. Blake and C.J. Merz, "UCI Repository of Machine Learning Databases," Dept. of Information and Computer Science, Univ. of California, Irvine, http://www.ics.uci.edu/-mlearn/mlrepository.html, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 61
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A Technique for Combining Boosting and Wagging
    • G.I. Webb, "Multiboosting: A Technique for Combining Boosting and Wagging," Machine Learning, vol. 40, no. 2, pp. 159-196, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 62
    • 0003619255 scopus 로고    scopus 로고
    • Bias, Variance and Arcing Classifiers
    • Technical Report 460, Statistics Dept, Univ. of California, Berkeley
    • L. Breiman, "Bias, Variance and Arcing Classifiers," Technical Report 460, Statistics Dept., Univ. of California, Berkeley, 1996.
    • (1996)
    • Breiman, L.1
  • 63
    • 21744462998 scopus 로고    scopus 로고
    • On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality
    • J.H. Friedman, "On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality," Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 55-77, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 66
    • 35648990726 scopus 로고    scopus 로고
    • Introduction to the Practice of Statistics
    • fourth ed
    • D.S. Moore and G.P. McCabe, Introduction to the Practice of Statistics, fourth ed. Michelle Julet, 2002.
    • (2002) Michelle Julet
    • Moore, D.S.1    McCabe, G.P.2
  • 67
    • 84944811700 scopus 로고
    • The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance
    • M. Friedman, "The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance," J. Am. Statistical Assoc., vol. 32, pp. 675-701, 1937.
    • (1937) J. Am. Statistical Assoc , vol.32 , pp. 675-701
    • Friedman, M.1
  • 68
    • 0001837148 scopus 로고
    • A Comparison of Alternative Tests of Significance for the Problem of m Rankings
    • M. Friedman, "A Comparison of Alternative Tests of Significance for the Problem of m Rankings," Annals of Math. Statistics, vol. 11, pp. 86-92, 1940.
    • (1940) Annals of Math. Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 69
    • 29644438050 scopus 로고    scopus 로고
    • Statistical Comparisons of Classifiers over Multiple Data Sets
    • J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006.
    • (2006) J. Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 72
    • 35649009111 scopus 로고    scopus 로고
    • Learning Flexible Causal Models with MML,
    • PhD dissertation, Monash Univ
    • R. O'Donnell, "Learning Flexible Causal Models with MML," PhD dissertation, Monash Univ., 2007.
    • (2007)
    • O'Donnell, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.