-
1
-
-
34250758502
-
-
Cerquides, J., & Mántaras, R. L. D. (2005). Robust Bayesian linear classifier ensembles. Proc. 16th European Conf. Machine Learning, Lecture Notes in Computer Science (pp. 70-81).
-
Cerquides, J., & Mántaras, R. L. D. (2005). Robust Bayesian linear classifier ensembles. Proc. 16th European Conf. Machine Learning, Lecture Notes in Computer Science (pp. 70-81).
-
-
-
-
2
-
-
0002419948
-
Beyond independence: Conditions for the optimality of the simple Bayesian classifier
-
Morgan Kaufmann
-
Domingos, P., & Pazzani, M. J. (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Proc. 13th Int. Conf. Machine Learning (pp. 105-112). Morgan Kaufmann.
-
(1996)
Proc. 13th Int. Conf. Machine Learning
, pp. 105-112
-
-
Domingos, P.1
Pazzani, M.J.2
-
4
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
Morgan Kaufmann
-
Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. Proc. 13th Int. Joint Conf. Artificial Intelligence (IJCAI-93) (pp. 1022-1029). Morgan Kaufmann.
-
(1993)
Proc. 13th Int. Joint Conf. Artificial Intelligence (IJCAI-93)
, pp. 1022-1029
-
-
Fayyad, U.M.1
Irani, K.B.2
-
5
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
6
-
-
0003684449
-
-
New York: Springer
-
Hastie, T., Tibshirani, R., & Friedman, J. (2001). Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer.
-
(2001)
Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
7
-
-
0002610991
-
Learning augmented Bayesian classifers: A comparison of distribution-based and classification-based approaches
-
Keogh, E. J., & Pazzani, M. J. (1999). Learning augmented Bayesian classifers: A comparison of distribution-based and classification-based approaches. Proc. Int. Workshop on Artificial Intelligence and Statistics (pp. 225-230).
-
(1999)
Proc. Int. Workshop on Artificial Intelligence and Statistics
, pp. 225-230
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
8
-
-
0022848955
-
Feature selection and extraction
-
T. Y. Young and K.-S. Fu Eds, New York: Academic Press
-
Kittler, J. (1986). Feature selection and extraction. In T. Y. Young and K.-S. Fu (Eds.), Handbook of Pattern Recognition and Image Processing. New York: Academic Press.
-
(1986)
Handbook of Pattern Recognition and Image Processing
-
-
Kittler, J.1
-
10
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
San Francisco: Morgan Kaufmann
-
Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss functions. Proc. 13th Int. Conf. Machine Learning (pp. 275-283). San Francisco: Morgan Kaufmann.
-
(1996)
Proc. 13th Int. Conf. Machine Learning
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.2
-
11
-
-
84886741606
-
Induction of recursive Bayesian classifiers
-
Berlin: Springer-Verlag
-
Langley, P. (1993). Induction of recursive Bayesian classifiers. Proc. 1993 European Conf. Machine Learning (pp. 153-164). Berlin: Springer-Verlag.
-
(1993)
Proc. 1993 European Conf. Machine Learning
, pp. 153-164
-
-
Langley, P.1
-
14
-
-
85010067887
-
Learning limited dependence Bayesian classifiers
-
Menlo Park, CA: AAAI Press
-
Sahami, M. (1996). Learning limited dependence Bayesian classifiers. Proc. 2nd Int. Conf. Knowledge Discovery in Databases (pp. 334-338). Menlo Park, CA: AAAI Press.
-
(1996)
Proc. 2nd Int. Conf. Knowledge Discovery in Databases
, pp. 334-338
-
-
Sahami, M.1
-
15
-
-
0034247206
-
Multiboosting: A technique for combining boosting and wagging
-
Webb, G. I. (2000). Multiboosting: A technique for combining boosting and wagging. Machine. Learning, 40, 159-196.
-
(2000)
Machine. Learning
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
16
-
-
84944899840
-
Candidate elimination criteria for lazy Bayesian rules
-
Berlin: Springer
-
Webb, G. I. (2001). Candidate elimination criteria for lazy Bayesian rules. Proc. 14th Australian Joint Conf. Artificial Intelligence (pp. 545-556). Berlin: Springer.
-
(2001)
Proc. 14th Australian Joint Conf. Artificial Intelligence
, pp. 545-556
-
-
Webb, G.I.1
-
17
-
-
14844351034
-
Not so naive Bayes: Aggregating one-dependence estimators
-
Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning, 58, 5-24.
-
(2005)
Machine Learning
, vol.58
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.2
Wang, Z.3
-
20
-
-
33745585371
-
Ensemble selection for superparent-one-dependence estimators
-
Springer
-
Yang, Y., Korb, K., Ting, K.-M., & Webb, G. I. (2005). Ensemble selection for superparent-one-dependence estimators. Proc. 18th Australian Joint Conf. Artificial Intelligence (pp. 102-111). Springer.
-
(2005)
Proc. 18th Australian Joint Conf. Artificial Intelligence
, pp. 102-111
-
-
Yang, Y.1
Korb, K.2
Ting, K.-M.3
Webb, G.I.4
-
23
-
-
0034301677
-
Lazy learning of Bayesian rules
-
Zheng, Z., & Webb, G. I. (2000). Lazy learning of Bayesian rules. Machine Learning, 41, 53-84.
-
(2000)
Machine Learning
, vol.41
, pp. 53-84
-
-
Zheng, Z.1
Webb, G.I.2
|