-
2
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, IT-14, 462-467.
-
(1968)
IEEE Transactions on Information Theory
, vol.IT-14
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
4
-
-
0003642109
-
-
Technical Report. Department of Computer Science and Engineering, University of California, San Diego
-
Elkan, C. (1997). Boosting and naive bayesian learning (Technical Report). Department of Computer Science and Engineering, University of California, San Diego.
-
(1997)
Boosting and Naive Bayesian Learning
-
-
Elkan, C.1
-
5
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38, 337-374.
-
(2000)
The Annals of Statistics
, vol.38
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
6
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
8
-
-
14344256569
-
Learning bayesian network classifiers by maximizing conditional likelihood
-
Banff, Canada: ACM Press
-
Grossman, D., & Domingos, P. (2004). Learning bayesian network classifiers by maximizing conditional likelihood. Proc. 21st International Conference on Machine Learning (pp. 361-368). Banff, Canada: ACM Press.
-
(2004)
Proc. 21st International Conference on Machine Learning
, pp. 361-368
-
-
Grossman, D.1
Domingos, P.2
-
10
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
-
Cambridge, MA: MIT Press
-
Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Proc. 14th Conference on Advances in Neural Information Processing Systems (pp. 841-848). Cambridge, MA: MIT Press.
-
(2002)
Proc. 14th Conference on Advances in Neural Information Processing Systems
, pp. 841-848
-
-
Ng, A.Y.1
Jordan, M.I.2
-
11
-
-
85166318817
-
Interpretable boosted naive bayes classification
-
Ridgeway, G., Madigan, D., Richardson, T., & O'Kane, J. (1998). Interpretable boosted naive bayes classification. Proceedings Fourth International Conference on Knowledge Discovery and Data Mining.
-
(1998)
Proceedings Fourth International Conference on Knowledge Discovery and Data Mining
-
-
Ridgeway, G.1
Madigan, D.2
Richardson, T.3
O'Kane, J.4
-
13
-
-
4344706336
-
Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
-
Webb, G., & Zheng, Z. (2004). Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Transactions on Knowledge and Data Engineering, 16, 980-991.
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.16
, pp. 980-991
-
-
Webb, G.1
Zheng, Z.2
-
14
-
-
14844351034
-
Not so naive bayes: Aggregating one-dependence estimators
-
Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive bayes: Aggregating one-dependence estimators. Machine Learning, 58, 5-24.
-
(2005)
Machine Learning
, vol.58
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.2
Wang, Z.3
|