메뉴 건너뛰기




Volumn , Issue , 2005, Pages 369-376

Efficient discriminative learning of Bayesian network classifier via Boosted Augmented Naive Bayes

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; DATA REDUCTION; LEARNING SYSTEMS; OPTIMIZATION; PARAMETER ESTIMATION;

EID: 31844453166     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1102351.1102398     Document Type: Conference Paper
Times cited : (32)

References (14)
  • 2
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, IT-14, 462-467.
    • (1968) IEEE Transactions on Information Theory , vol.IT-14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 3
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 4
    • 0003642109 scopus 로고    scopus 로고
    • Technical Report. Department of Computer Science and Engineering, University of California, San Diego
    • Elkan, C. (1997). Boosting and naive bayesian learning (Technical Report). Department of Computer Science and Engineering, University of California, San Diego.
    • (1997) Boosting and Naive Bayesian Learning
    • Elkan, C.1
  • 5
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38, 337-374.
    • (2000) The Annals of Statistics , vol.38 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 14344256569 scopus 로고    scopus 로고
    • Learning bayesian network classifiers by maximizing conditional likelihood
    • Banff, Canada: ACM Press
    • Grossman, D., & Domingos, P. (2004). Learning bayesian network classifiers by maximizing conditional likelihood. Proc. 21st International Conference on Machine Learning (pp. 361-368). Banff, Canada: ACM Press.
    • (2004) Proc. 21st International Conference on Machine Learning , pp. 361-368
    • Grossman, D.1    Domingos, P.2
  • 10
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • Cambridge, MA: MIT Press
    • Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Proc. 14th Conference on Advances in Neural Information Processing Systems (pp. 841-848). Cambridge, MA: MIT Press.
    • (2002) Proc. 14th Conference on Advances in Neural Information Processing Systems , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 13
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    • Webb, G., & Zheng, Z. (2004). Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Transactions on Knowledge and Data Engineering, 16, 980-991.
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , pp. 980-991
    • Webb, G.1    Zheng, Z.2
  • 14
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive bayes: Aggregating one-dependence estimators
    • Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive bayes: Aggregating one-dependence estimators. Machine Learning, 58, 5-24.
    • (2005) Machine Learning , vol.58 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.