-
1
-
-
0001417067
-
Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations
-
V.I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E 53 (1996) 1336-339.
-
(1996)
Phys. Rev. E
, vol.53
, pp. 1336-1339
-
-
Karpman, V.I.1
-
2
-
-
0039592594
-
Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion
-
V.I. Karpman, A.G. Shagalov, Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion. Physica. D 144 (2000) 194-210.
-
(2000)
Physica. D
, vol.144
, pp. 194-210
-
-
Karpman, V.I.1
Shagalov, A.G.2
-
3
-
-
62049085138
-
The cubic fourth-order Schrödinger equation
-
B. Pausader, The cubic fourth-order Schrödinger equation. J. Func. Anal. 256 (2009) 2473- 2517.
-
(2009)
J. Func. Anal.
, vol.256
, pp. 2473-2517
-
-
Pausader, B.1
-
4
-
-
0015671259
-
The Soilton: A new concept in applied science
-
A.C. Scott, F.Y. Chu, D.W. Mciaughhn, The Soilton: a new concept in applied science, Proc. IEEE. 61 (1973) 1443-1483.
-
(1973)
Proc. IEEE
, vol.61
, pp. 1443-1483
-
-
Scott, A.C.1
Chu, F.Y.2
Mciaughhn, D.W.3
-
5
-
-
0037774726
-
Numerical methods for the simulation of a trapped nonlinear Schrödinger system
-
V.M. Pérez-García, X.Y. Liu, Numerical methods for the simulation of a trapped nonlinear Schrödinger system. Appl. Math. Comput. 144 (2003) 215-235.
-
(2003)
Appl. Math. Comput.
, vol.144
, pp. 215-235
-
-
Pérez-García, V.M.1
Liu, X.Y.2
-
6
-
-
12344307063
-
A difference scheme for a class of nonlinear Schrödinger equation
-
H.Y. Chao. A difference scheme for a class of nonlinear Schrödinger equation. J. Comput. Math. 5 (1987) 272-280.
-
(1987)
J. Comput. Math.
, vol.5
, pp. 272-280
-
-
Chao, H.Y.1
-
7
-
-
33746113364
-
A leap frog finite difference scheme for a class of nonlinear Schrödinger equations of high order
-
W.P. Zeng, A leap frog finite difference scheme for a class of nonlinear Schrödinger equations of high order. J. Comput. Math. 17 (1999) 133-138.
-
(1999)
J. Comput. Math.
, vol.17
, pp. 133-138
-
-
Zeng, W.P.1
-
8
-
-
77949739026
-
Symplectic geometric algorithms for Hamiltonian system
-
Press of Zhejiang: Hangzhou (in Chinese
-
K. Feng, M. Qin, Symplectic geometric algorithms for Hamiltonian system. Sci. and Tech. Press of Zhejiang: Hangzhou (in Chinese), 2002.
-
(2002)
Sci. and Tech.
-
-
Feng, K.1
Qin, M.2
-
9
-
-
0003835647
-
-
2nd ed. Springer-Verlag, Berlin
-
E. Hairer, C. Lubich, G. Wanner., Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations. 2nd ed., Springer-Verlag, Berlin, 2006.
-
(2006)
Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
10
-
-
34547507895
-
Recent progress in symplectic algorithms for use in quantum systems
-
X. Liu, Y. Qi, J. He, P. Ding, Recent progress in symplectic algorithms for use in quantum systems. Commun. Comput. Phys. 2 (2007) 1-53.
-
(2007)
Commun. Comput. Phys.
, vol.2
, pp. 1-53
-
-
Liu, X.1
Qi, Y.2
He, J.3
Ding, P.4
-
11
-
-
67650941643
-
Explicit symplectic methods for the nonlinear Schrödinger equation
-
H. Guan, Y. Jiao, J. Liu, Y. Tang, Explicit symplectic methods for the nonlinear Schrödinger equation. Commun. Comput. Phys. 6 (2009) 639-654.
-
(2009)
Commun. Comput. Phys.
, vol.6
, pp. 639-654
-
-
Guan, H.1
Jiao, Y.2
Liu, J.3
Tang, Y.4
-
12
-
-
48249133292
-
Long-term numerical simulation of the interaction between a neutron field and a neutral meson field by a symplectic-preserving scheme
-
L. Kong, J. Hong, R. Liu, Long-term numerical simulation of the interaction between a neutron field and a neutral meson field by a symplectic-preserving scheme. J. Phys. A: Math. Theor. 41 (2008) 255207.
-
(2008)
J. Phys. A: Math. Theor.
, vol.41
, pp. 255207
-
-
Kong, L.1
Hong, J.2
Liu, R.3
-
13
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
-
S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation. J. Comput. Phys. 157 (2000) 473-499.
-
(2000)
J. Comput. Phys.
, vol.157
, pp. 473-499
-
-
Reich, S.1
-
14
-
-
0037832748
-
Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
T.J. Bridges, S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284 (2001) 184-193.
-
(2001)
Phys. Lett. a
, vol.284
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
15
-
-
0039152065
-
Multi-symplectic spectral discretization for the Zakharov-Kuznetsov and shallow water equations
-
T.J. Bridges, S. Reich, Multi-symplectic spectral discretization for the Zakharov-Kuznetsov and shallow water equations. Physica D 152 (2001) 491-504.
-
(2001)
Physica D
, vol.152
, pp. 491-504
-
-
Bridges, T.J.1
Reich, S.2
-
16
-
-
33645984826
-
Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
-
J. Hong, Y. Liu, Hans Munthe-Kaas, Antonella Zanna, Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math. 56 (2006) 814-843.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 814-843
-
-
Hong, J.1
Liu, Y.2
Munthe-Kaas, H.3
Zanna, A.4
-
17
-
-
34548697286
-
Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients
-
J. Hong, X. Liu, C. Li, Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients. J. Comput. Phys. 226 (2007) 1968-1984.
-
(2007)
J. Comput. Phys.
, vol.226
, pp. 1968-1984
-
-
Hong, J.1
Liu, X.2
Li, C.3
-
18
-
-
38849102343
-
Explicit multi-symplectic methods for Hamiltonian wave equations
-
J. Hong, S. Jiang, C. Li, H. Liu, Explicit multi-symplectic methods for Hamiltonian wave equations. Commun. Comput. Phys. 2 (2007) 662-683.
-
(2007)
Commun. Comput. Phys.
, vol.2
, pp. 662-683
-
-
Hong, J.1
Jiang, S.2
Li, C.3
Liu, H.4
-
19
-
-
34547553661
-
On multi-symplecticity of partitioned Runge-Kutta and splitting methods
-
B.N. Ryland, B.I. McLachlan, J. Frank, On multi-symplecticity of partitioned Runge-Kutta and splitting methods. Inter. J. Comput. Math. 84 (2007) 847-869.
-
(2007)
Inter. J. Comput. Math.
, vol.84
, pp. 847-869
-
-
Ryland, B.N.1
Mclachlan, B.I.2
Frank, J.3
-
20
-
-
26944495302
-
Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
-
J. Hong, C. Li, Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211 (2006) 448-472.
-
(2006)
J. Comput. Phys.
, vol.211
, pp. 448-472
-
-
Hong, J.1
Li, C.2
-
22
-
-
0002058827
-
The numerical solution of parabolic and elliptic equations
-
D. Peaceman, H. Rachford, The numerical solution of parabolic and elliptic equations, J. Soc. Indust. Appl. Math. 3 (1955) 28-41.
-
(1955)
J. Soc. Indust. Appl. Math.
, vol.3
, pp. 28-41
-
-
Peaceman, D.1
Rachford, H.2
-
23
-
-
84967782959
-
On the numerical solution of heat conduction problems in two and three space variables
-
J. Douglas Jr, H.H. Rachford Jr, On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82 (1956) 421-439.
-
(1956)
Trans. Amer. Math. Soc.
, vol.82
, pp. 421-439
-
-
Douglas Jr., J.1
Rachford Jr., H.H.2
-
24
-
-
0000251609
-
Numerical solutions of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method
-
A.C. Newell (Ed.), Providence, RI
-
F. Tappert, Numerical solutions of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method. in: A.C. Newell (Ed.), Nonlinear Wave Motion, Lect. Appl. Math., Amer. Math. Soc., Providence, RI, 15, (1974) 215-216.
-
(1974)
Nonlinear Wave Motion, Lect. Appl. Math., Amer. Math. Soc.
, vol.15
, pp. 215-216
-
-
Tappert, F.1
-
25
-
-
0001518684
-
On the construction and comparison of difference scheme
-
G. Strang, On the construction and comparison of difference scheme. SIAM J.Numer. Anal. 5 (1968) 506-517.
-
(1968)
SIAM J.Numer. Anal.
, vol.5
, pp. 506-517
-
-
Strang, G.1
-
26
-
-
33748077411
-
Semi-implicit operator splitting Padé method for higher-order nonlinear Schrödinger equations
-
Z.L. Xu, J.S. He, H.D. Han, Semi-implicit operator splitting Padé method for higher-order nonlinear Schrödinger equations. Appl. Math. Comput. 179 (2006) 596-605.
-
(2006)
Appl. Math. Comput.
, vol.179
, pp. 596-605
-
-
Xu, Z.L.1
He, J.S.2
Han, H.D.3
-
27
-
-
77954626424
-
Numerical studies on Boussinesq-type equations via a split-step Fourier method
-
DOI: 10.1080/00207160802464597
-
L. Kong, L.Wang, Numerical studies on Boussinesq-type equations via a split-step Fourier method, Inter. J. Comput. Math., DOI: 10.1080/ 00207160802464597.
-
Inter. J. Comput. Math.
-
-
Kong, L.1
Wang, L.2
|