-
1
-
-
28844475048
-
On symplectic and multisymplectic schemes for the KdV equation
-
Ascher U.M., and McLachlan R.I. On symplectic and multisymplectic schemes for the KdV equation. J. Sci. Comput. 25 (2005) 83-104
-
(2005)
J. Sci. Comput.
, vol.25
, pp. 83-104
-
-
Ascher, U.M.1
McLachlan, R.I.2
-
2
-
-
0042137401
-
Muti-symplectic structures and wave propagation
-
Bridges T.J. Muti-symplectic structures and wave propagation. Math. Proc. Camb. Phil. Soc. 121 (1997) 147-190
-
(1997)
Math. Proc. Camb. Phil. Soc.
, vol.121
, pp. 147-190
-
-
Bridges, T.J.1
-
3
-
-
0037832748
-
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve sysmplecticity
-
Bridges T.J., and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve sysmplecticity. Phys. Lett. A 284 (2001) 184-193
-
(2001)
Phys. Lett. A
, vol.284
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
4
-
-
33645522650
-
Conserved quantities of some Hamiltonian wave equations after full discretization
-
Cano B. Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103 (2006) 197-223
-
(2006)
Numer. Math.
, vol.103
, pp. 197-223
-
-
Cano, B.1
-
5
-
-
0001160015
-
Difference schemes for solving the generalized nonlinear Schrödinger equation
-
Chang Q., Jia E., and Sun W. Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148 (1999) 397-415
-
(1999)
J. Comput. Phys.
, vol.148
, pp. 397-415
-
-
Chang, Q.1
Jia, E.2
Sun, W.3
-
6
-
-
0003835647
-
-
Springer-Verlag, Berlin, Heidelberg
-
Hairer E., Lubich C., and Wanner G. Geometric Numerical Integration (2002), Springer-Verlag, Berlin, Heidelberg
-
(2002)
Geometric Numerical Integration
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
7
-
-
84867955067
-
A novel numerical approach to simulating nonlinear Schrödinger equation with varying coefficients
-
Hong J., and Liu Y. A novel numerical approach to simulating nonlinear Schrödinger equation with varying coefficients. Appl. Math. Lett. 16 (2003) 759-765
-
(2003)
Appl. Math. Lett.
, vol.16
, pp. 759-765
-
-
Hong, J.1
Liu, Y.2
-
8
-
-
3543095217
-
Multi-symplecticity of the centred box discretization for a class of Hamiltonian PDEs and an application to quasi-periodically solitary wave of qpKdV equation
-
Hong J., and Liu Y. Multi-symplecticity of the centred box discretization for a class of Hamiltonian PDEs and an application to quasi-periodically solitary wave of qpKdV equation. Math. Comput. Model. 39 (2004) 1035-1047
-
(2004)
Math. Comput. Model.
, vol.39
, pp. 1035-1047
-
-
Hong, J.1
Liu, Y.2
-
9
-
-
33645984826
-
Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
-
Hong J., Liu Y., Munthe-Kaas H., and Zanna A. Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math. 56 (2006) 814-843
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 814-843
-
-
Hong, J.1
Liu, Y.2
Munthe-Kaas, H.3
Zanna, A.4
-
10
-
-
85009774577
-
The Multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
-
Hong J., Liu H., and Sun G. The Multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Math. Comput. 75 (2006) 167-181
-
(2006)
Math. Comput.
, vol.75
, pp. 167-181
-
-
Hong, J.1
Liu, H.2
Sun, G.3
-
11
-
-
26944495302
-
Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
-
Hong J., and Li C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211 (2006) 448-472
-
(2006)
J. Comput. Phys.
, vol.211
, pp. 448-472
-
-
Hong, J.1
Li, C.2
-
13
-
-
0035841060
-
Geometric integrators for the nonlinear Schrödinger equation
-
Islas A.L., Karpeev D.A., and Schober C.M. Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173 (2001) 116-148
-
(2001)
J. Comput. Phys.
, vol.173
, pp. 116-148
-
-
Islas, A.L.1
Karpeev, D.A.2
Schober, C.M.3
-
14
-
-
3242702916
-
On the preservation of phase space structure under multisymplectic discretization
-
Islas A.L., and Schober C.M. On the preservation of phase space structure under multisymplectic discretization. J. Comput. Phys. 197 (2004) 585-609
-
(2004)
J. Comput. Phys.
, vol.197
, pp. 585-609
-
-
Islas, A.L.1
Schober, C.M.2
-
16
-
-
0000140852
-
multisymplectic geometry and continuum mechanics
-
Marsden J.E., Pekarsky S., Shkoller S., West M., and methods V. multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38 (2001) 253-284
-
(2001)
J. Geom. Phys.
, vol.38
, pp. 253-284
-
-
Marsden, J.E.1
Pekarsky, S.2
Shkoller, S.3
West, M.4
methods, V.5
-
17
-
-
0037400145
-
Multisymplectic integration methods for Hamiltonian PDEs
-
Moore B., and Reich S. Multisymplectic integration methods for Hamiltonian PDEs. Future Gener. Comput. Syst. 19 (2003) 395-402
-
(2003)
Future Gener. Comput. Syst.
, vol.19
, pp. 395-402
-
-
Moore, B.1
Reich, S.2
-
18
-
-
0242339583
-
Backward error analysis for multi-symplectic integration methods
-
Moore B., and Reich S. Backward error analysis for multi-symplectic integration methods. Numer. Math. 95 (2003) 625-652
-
(2003)
Numer. Math.
, vol.95
, pp. 625-652
-
-
Moore, B.1
Reich, S.2
-
19
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
-
Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation. J. Comput. Phys. 157 (2000) 473-499
-
(2000)
J. Comput. Phys.
, vol.157
, pp. 473-499
-
-
Reich, S.1
-
21
-
-
0034319701
-
Novel soliton solutions of the nonlinear Schrödinger equation model
-
Serkin V.N., and Hasegawa A. Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85 (2000) 4502-4505
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4502-4505
-
-
Serkin, V.N.1
Hasegawa, A.2
-
22
-
-
0042475779
-
On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian)
-
Numerical Solution of Ordinary Differential Equations. Filippov S.S. (Ed), USSR Academy of Sciences, Moscow
-
Suris Y.B. On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian). In: Filippov S.S. (Ed). Numerical Solution of Ordinary Differential Equations. Keldysh Institute of Applied Mathematics (1988), USSR Academy of Sciences, Moscow 148-160
-
(1988)
Keldysh Institute of Applied Mathematics
, pp. 148-160
-
-
Suris, Y.B.1
-
23
-
-
0038041190
-
The canonicity of mapping generated by Runge-Kutta type methods when integrating the systems over(x, ̈) = - ∂ U / ∂ x
-
Suris Y.B. The canonicity of mapping generated by Runge-Kutta type methods when integrating the systems over(x, ̈) = - ∂ U / ∂ x. Zh. Vychisl. Mat. i Mat. Fiz. 29 (1989) 138-144
-
(1989)
Zh. Vychisl. Mat. i Mat. Fiz.
, vol.29
, pp. 138-144
-
-
Suris, Y.B.1
|