-
1
-
-
0003835647
-
-
second edition Springer-Verlag, Berlin
-
Hairer, E., Lubich, C and Wanner, G., 2006 Geometric. Numerical Integration, second edition (Springer-Verlag, Berlin).
-
(2006)
Geometric. Numerical Integration
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
2
-
-
33646234930
-
Geometric Integrators for ODEs
-
McLachlan, R. and Quispel, G., 2006, Geometric Integrators for ODEs. Journal of Physics A, 39(19), 5251-5285.
-
(2006)
Journal of Physics A
, vol.39
, Issue.19
, pp. 5251-5285
-
-
McLachlan, R.1
Quispel, G.2
-
3
-
-
0037832748
-
Multi-Symplectic Integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
Bridges, T. and Reich, S., 2001, Multi-Symplectic Integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A, 284, 184-193.
-
(2001)
Physics Letters A
, vol.284
, pp. 184-193
-
-
Bridges, T.1
Reich, S.2
-
4
-
-
34547508162
-
Multisymplectic Integration
-
PhD thesis, Massey University, Palmerston North, New Zealand in preparation
-
Ryland, B.N., Multisymplectic Integration. PhD thesis, Massey University, Palmerston North, New Zealand (in preparation).
-
-
-
Ryland, B.N.1
-
5
-
-
0032476963
-
Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs
-
Marsden, J., Patrick, G. and Shkoller, S., 1998, Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs. Communications in Mathematical Physics, 199, 351-395.
-
(1998)
Communications in Mathematical Physics
, vol.199
, pp. 351-395
-
-
Marsden, J.1
Patrick, G.2
Shkoller, S.3
-
6
-
-
33645984826
-
Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
-
Hong, J., Liu, Y., Munthe-Kaas, H. and Zanna, A., 2006, Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Applied Numerical Mathematics, 56(6), 814-843.
-
(2006)
Applied Numerical Mathematics
, vol.56
, Issue.6
, pp. 814-843
-
-
Hong, J.1
Liu, Y.2
Munthe-Kaas, H.3
Zanna, A.4
-
7
-
-
33645743266
-
Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations
-
Liu, H. and Zhang, K., 2006, Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations. IMA Journal of Numerical Analysis, 26(2), 252-271.
-
(2006)
IMA Journal of Numerical Analysis
, vol.26
, Issue.2
, pp. 252-271
-
-
Liu, H.1
Zhang, K.2
-
8
-
-
27144436424
-
A multisymplectic integrator for the periodic nonlinear Schrödinger equation
-
Chen, J.B., 2005, A multisymplectic integrator for the periodic nonlinear Schrödinger equation. Applied Mathematics and Computation, 170(2), 1394-1417.
-
(2005)
Applied Mathematics and Computation
, vol.170
, Issue.2
, pp. 1394-1417
-
-
Chen, J.B.1
-
9
-
-
4344660059
-
Numerical study of the soliton waves of the coupled nonlinear Schrödinger system
-
Sun, J.Q., Gu, X.Y. and Ma, Z.Q., 2004, Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Physica D, 196(3-4), 311-328.
-
(2004)
Physica D
, vol.196
, Issue.3-4
, pp. 311-328
-
-
Sun, J.Q.1
Gu, X.Y.2
Ma, Z.Q.3
-
10
-
-
0142216144
-
Multi-symplectic methods for the coupled ID nonlinear Schrödinger system
-
Sun, J.Q. and Qin, M.Z., 2003, Multi-symplectic methods for the coupled ID nonlinear Schrödinger system. Computer Physics Communications, 155(3), 221-235.
-
(2003)
Computer Physics Communications
, vol.155
, Issue.3
, pp. 221-235
-
-
Sun, J.Q.1
Qin, M.Z.2
-
11
-
-
0036644593
-
A multisymplectic variational integrator for the nonlinear Schrödinger equation
-
Chen, J. and Qin, M., 2002, A multisymplectic variational integrator for the nonlinear Schrödinger equation. Numerical Methods for Partial Differential Equations, 18, 523-536.
-
(2002)
Numerical Methods for Partial Differential Equations
, vol.18
, pp. 523-536
-
-
Chen, J.1
Qin, M.2
-
12
-
-
0036532037
-
Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation
-
Chen, J., Qin, M. and Tang, Y., 2002, Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation. Computers and Mathematics with Applications, 43(8-9), 1095-1106.
-
(2002)
Computers and Mathematics with Applications
, vol.43
, Issue.8-9
, pp. 1095-1106
-
-
Chen, J.1
Qin, M.2
Tang, Y.3
-
13
-
-
0035841060
-
Geometric integrators for the nonlinear Schrödinger equation
-
Islas, A., Karpeev, D. and Schober, C., 2001, Geometric integrators for the nonlinear Schrödinger equation. Journal of Computational Physics, 173(1), 116-148.
-
(2001)
Journal of Computational Physics
, vol.173
, Issue.1
, pp. 116-148
-
-
Islas, A.1
Karpeev, D.2
Schober, C.3
-
14
-
-
0035892442
-
New schemes for the nonlinear Shrödinger equation
-
Chen, J., 2001, New schemes for the nonlinear Shrödinger equation. Applied Mathematics and Computations, 124(3), 371-379.
-
(2001)
Applied Mathematics and Computations
, vol.124
, Issue.3
, pp. 371-379
-
-
Chen, J.1
-
15
-
-
34447250005
-
Solving the nonlinear Schrödinger equation using exponential integrators
-
Berland, H., Owren, B. and Skaflestad, B., 2006, Solving the nonlinear Schrödinger equation using exponential integrators. Modeling, Identifications and Control, 27, 201-217.
-
(2006)
Modeling, Identifications and Control
, vol.27
, pp. 201-217
-
-
Berland, H.1
Owren, B.2
Skaflestad, B.3
-
16
-
-
0001668244
-
Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations
-
Hardin, R.H. and Tappert, F.D., 1973, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Review, 15, 423.
-
(1973)
SIAM Review
, vol.15
, pp. 423
-
-
Hardin, R.H.1
Tappert, F.D.2
-
17
-
-
1042304391
-
Multisymplectic box schemes and the Korteweg-de Vries Equation
-
Ascher, U. and McLachlan, R., 2004, Multisymplectic box schemes and the Korteweg-de Vries Equation. Applied Numerical Mathematics, 48, 255-269.
-
(2004)
Applied Numerical Mathematics
, vol.48
, pp. 255-269
-
-
Ascher, U.1
McLachlan, R.2
-
18
-
-
85009774577
-
The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
-
Hong, J., Liu, Y. and Sun, G., 2005, The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Mathematics of Computation, 75, 167-181.
-
(2005)
Mathematics of Computation
, vol.75
, pp. 167-181
-
-
Hong, J.1
Liu, Y.2
Sun, G.3
-
19
-
-
0000545837
-
Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
-
Jay, L.O., 1996, Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. SIAM Journal of Numerical Analysis, 33(1), 368-387.
-
(1996)
SIAM Journal of Numerical Analysis
, vol.33
, Issue.1
, pp. 368-387
-
-
Jay, L.O.1
-
21
-
-
0000300459
-
Numerically induced chaos in the nonlinear Schrödinger equation
-
Ablowitz, M.J. and Herbst, B.M., 1989, Numerically induced chaos in the nonlinear Schrödinger equation. Physics Review Letters, 62(18), 2065-2068.
-
(1989)
Physics Review Letters
, vol.62
, Issue.18
, pp. 2065-2068
-
-
Ablowitz, M.J.1
Herbst, B.M.2
-
22
-
-
0037400187
-
Multi-symplectic methods for generalized Schrödinger equations
-
Islas, A. and Schober, C., 2003, Multi-symplectic methods for generalized Schrödinger equations. Future Generation Computer Systems, 19, 403-413.
-
(2003)
Future Generation Computer Systems
, vol.19
, pp. 403-413
-
-
Islas, A.1
Schober, C.2
-
24
-
-
85095839561
-
Splitting methods
-
McLachlan, R.I. and Quispel, G.R.W., 2002, Splitting methods. Acta Numérica, 11, 341-434.
-
(2002)
Acta Numérica
, vol.11
, pp. 341-434
-
-
McLachlan, R.I.1
Quispel, G.R.W.2
-
25
-
-
1042263828
-
Geometric space-time integration of ferromagnetic materials
-
Frank, J., 2004, Geometric space-time integration of ferromagnetic materials. Applied Numerical Mathematics, 48, 307-322.
-
(2004)
Applied Numerical Mathematics
, vol.48
, pp. 307-322
-
-
Frank, J.1
-
26
-
-
0031270094
-
Optimal stability polynomials for splitting methods, with application to the time-dependent Schröder equation
-
Gray, S. and McLachlan, R.I., 1997, Optimal stability polynomials for splitting methods, with application to the time-dependent Schröder equation. Applied Numerical Mathematics, 25, 275-286.
-
(1997)
Applied Numerical Mathematics
, vol.25
, pp. 275-286
-
-
Gray, S.1
McLachlan, R.I.2
-
27
-
-
33646271105
-
Numerical methods for Hamiltonian PDEs
-
Bridges, T. and Reich, S., 2006, Numerical methods for Hamiltonian PDEs. Journal of Physics A, 39, 5287-5320.
-
(2006)
Journal of Physics A
, vol.39
, pp. 5287-5320
-
-
Bridges, T.1
Reich, S.2
-
28
-
-
0039152065
-
Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations
-
Bridges, T. and Reich, S., 2001, Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations. Physica D, 152, 491-504.
-
(2001)
Physica D
, vol.152
, pp. 491-504
-
-
Bridges, T.1
Reich, S.2
|