-
1
-
-
33646008005
-
Hamiltonian integrators for the nonlinear Schrödinger equation
-
Ablowitz M.J., and Schober C.M. Hamiltonian integrators for the nonlinear Schrödinger equation. Internat. J. Modern Phys. C 5 (1994) 397-401
-
(1994)
Internat. J. Modern Phys. C
, vol.5
, pp. 397-401
-
-
Ablowitz, M.J.1
Schober, C.M.2
-
2
-
-
0034676955
-
Splitting methods for the time-dependent Schrödinger equation
-
Blanes S., and Moan P.C. Splitting methods for the time-dependent Schrödinger equation. Phys. Lett. A 265 (2000) 35-42
-
(2000)
Phys. Lett. A
, vol.265
, pp. 35-42
-
-
Blanes, S.1
Moan, P.C.2
-
3
-
-
0003230767
-
Global Solutions of Nonlinear Schrödinger Equations
-
American Mathematical Society, Providence, RI
-
Bourgain J. Global Solutions of Nonlinear Schrödinger Equations. Amer. Math. Soc. Colloq. Publ. vol. 46 (1999), American Mathematical Society, Providence, RI
-
(1999)
Amer. Math. Soc. Colloq. Publ.
, vol.46
-
-
Bourgain, J.1
-
4
-
-
0042137401
-
Multi-symplectic structures and wave propagation
-
Bridges T.J. Multi-symplectic structures and wave propagation. Math. Proc. Cambridge Philos. Soc. 121 (1997) 147-190
-
(1997)
Math. Proc. Cambridge Philos. Soc.
, vol.121
, pp. 147-190
-
-
Bridges, T.J.1
-
5
-
-
0037832748
-
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
Bridges T.J., and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284 4-5 (2001) 184-193
-
(2001)
Phys. Lett. A
, vol.284
, Issue.4-5
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
6
-
-
1042300924
-
Geometric integration and its application
-
North-Holland, Amsterdam
-
Budd C.J., and Piggott M.D. Geometric integration and its application. Handbook Numer. Anal. vol. XI (2003), North-Holland, Amsterdam 35-139
-
(2003)
Handbook Numer. Anal.
, vol.XI
, pp. 35-139
-
-
Budd, C.J.1
Piggott, M.D.2
-
7
-
-
33645976504
-
-
J. Chen, M-Z. Qin, Multi-symplectic geometry and multisymplectic integrators for the nonlinear Schrödinger equation, Preprint, 2000
-
-
-
-
8
-
-
0035892442
-
New schemes for the nonlinear Schrödinger equation
-
Chen J. New schemes for the nonlinear Schrödinger equation. Appl. Math. Comput. 124 (2001) 371-379
-
(2001)
Appl. Math. Comput.
, vol.124
, pp. 371-379
-
-
Chen, J.1
-
9
-
-
49149137309
-
Finite-difference solutions of a non-linear Schrödinger equation
-
Delfour M., Fortin M., and Payre G. Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44 (1981) 277-288
-
(1981)
J. Comput. Phys.
, vol.44
, pp. 277-288
-
-
Delfour, M.1
Fortin, M.2
Payre, G.3
-
11
-
-
0002417767
-
Two-dimensional time-dependent quantum-mechanical scattering event
-
Galbraith I., Ching Y.S., and Abraham E. Two-dimensional time-dependent quantum-mechanical scattering event. Amer. J. Phys. 52 1 (1984) 60-68
-
(1984)
Amer. J. Phys.
, vol.52
, Issue.1
, pp. 60-68
-
-
Galbraith, I.1
Ching, Y.S.2
Abraham, E.3
-
12
-
-
0000074154
-
Symplectic integrators tailored to the time-dependent Schrödinger equation
-
Gray S.K., and Manolopoulos D.E. Symplectic integrators tailored to the time-dependent Schrödinger equation. J. Chem. Phys. 104 18 (1996) 7099-7112
-
(1996)
J. Chem. Phys.
, vol.104
, Issue.18
, pp. 7099-7112
-
-
Gray, S.K.1
Manolopoulos, D.E.2
-
13
-
-
84950807175
-
Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena
-
Goldberg A., and Schey H.M. Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. Amer. J. Phys. 35 3 (1967) 177-186
-
(1967)
Amer. J. Phys.
, vol.35
, Issue.3
, pp. 177-186
-
-
Goldberg, A.1
Schey, H.M.2
-
14
-
-
0001257175
-
Numerical experiment with the nonlinear Schrödinger equation
-
Herbst B.M., Morris J., and Mitchell A.R. Numerical experiment with the nonlinear Schrödinger equation. J. Comput. Phys. 60 (1985) 282-305
-
(1985)
J. Comput. Phys.
, vol.60
, pp. 282-305
-
-
Herbst, B.M.1
Morris, J.2
Mitchell, A.R.3
-
16
-
-
3543095217
-
Multi-symplecticity of the centred box discretizations for a class of Hamiltonian PDE's and an application to quasi-periodically solitary wave of qpKdV equation
-
Hong J., and Liu Y. Multi-symplecticity of the centred box discretizations for a class of Hamiltonian PDE's and an application to quasi-periodically solitary wave of qpKdV equation. Math. Comput. Model. 39 (2004) 1035-1047
-
(2004)
Math. Comput. Model.
, vol.39
, pp. 1035-1047
-
-
Hong, J.1
Liu, Y.2
-
17
-
-
84867955067
-
A novel numerical approach to simulating nonlinear Schrödinger equation with varying coefficients
-
Hong J., and Liu Y. A novel numerical approach to simulating nonlinear Schrödinger equation with varying coefficients. Appl. Math. Lett. 16 (2003) 759-765
-
(2003)
Appl. Math. Lett.
, vol.16
, pp. 759-765
-
-
Hong, J.1
Liu, Y.2
-
18
-
-
31244436460
-
Multi-symplecticity of the centred box discretizations for Hamiltonian PDE's with m {greater than or slanted equal to} 2 space dimensions
-
Hong J., and Qin M.-Z. Multi-symplecticity of the centred box discretizations for Hamiltonian PDE's with m {greater than or slanted equal to} 2 space dimensions. Appl. Math. Lett. 15 (2002) 1005-1011
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 1005-1011
-
-
Hong, J.1
Qin, M.-Z.2
-
19
-
-
0007774497
-
Laguerre Scheme: Another member for propagating the time-dependent Schrödinger equation
-
Hu X.-G. Laguerre Scheme: Another member for propagating the time-dependent Schrödinger equation. Phys. Rev. E 59 2 (1999) 2471-2474
-
(1999)
Phys. Rev. E
, vol.59
, Issue.2
, pp. 2471-2474
-
-
Hu, X.-G.1
-
21
-
-
0035841060
-
Geometric integrations for the nonlinear Schrödinger equation
-
Islas A.L., Karpeev D.A., and Schober C.M. Geometric integrations for the nonlinear Schrödinger equation. J. Comput. Phys. 173 (2001) 116-148
-
(2001)
J. Comput. Phys.
, vol.173
, pp. 116-148
-
-
Islas, A.L.1
Karpeev, D.A.2
Schober, C.M.3
-
23
-
-
0002999318
-
Derivation of the discrete conservation laws for a family of finite difference schemes
-
Jiménez S. Derivation of the discrete conservation laws for a family of finite difference schemes. Appl. Math. Comput. 64 (1994) 13-45
-
(1994)
Appl. Math. Comput.
, vol.64
, pp. 13-45
-
-
Jiménez, S.1
-
24
-
-
0034918288
-
Symplectic integrators for discrete nonlinear Schrödinger systems
-
Karpeer D.A., and Schober C.M. Symplectic integrators for discrete nonlinear Schrödinger systems. Math. Comput. Simulation 56 (2001) 145-156
-
(2001)
Math. Comput. Simulation
, vol.56
, pp. 145-156
-
-
Karpeer, D.A.1
Schober, C.M.2
-
25
-
-
0039861863
-
Quantum chaos
-
Hoffmann K.H., and Schreiber M. (Eds), Springer, Berlin
-
Korsch H.J., and Wiescher H. Quantum chaos. In: Hoffmann K.H., and Schreiber M. (Eds). Computational Physics (1996), Springer, Berlin 225-244
-
(1996)
Computational Physics
, pp. 225-244
-
-
Korsch, H.J.1
Wiescher, H.2
-
27
-
-
0001529171
-
Difference equations and conservation laws
-
Lee T.D. Difference equations and conservation laws. J. Statist. Phys. 46 5/6 (1987) 843-860
-
(1987)
J. Statist. Phys.
, vol.46
, Issue.5-6
, pp. 843-860
-
-
Lee, T.D.1
-
28
-
-
84965060858
-
Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation
-
Li S., and Vu-Quoc L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32 6 (1995) 1839-1875
-
(1995)
SIAM J. Numer. Anal.
, vol.32
, Issue.6
, pp. 1839-1875
-
-
Li, S.1
Vu-Quoc, L.2
-
29
-
-
0032476963
-
Multisymplectic geometry, variational integrators, and nonlinear PDEs
-
Marsden J.E., Patrick G.P., and Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Comm. Math. Phys. 199 (1998) 351-395
-
(1998)
Comm. Math. Phys.
, vol.199
, pp. 351-395
-
-
Marsden, J.E.1
Patrick, G.P.2
Shkoller, S.3
-
30
-
-
0000140852
-
Variational methods, multisymplectic geometry and continuum mechanics
-
Marsden J.E., Pekarsky S., Shkoller S., and West M. Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38 (2001) 253-284
-
(2001)
J. Geom. Phys.
, vol.38
, pp. 253-284
-
-
Marsden, J.E.1
Pekarsky, S.2
Shkoller, S.3
West, M.4
-
31
-
-
0013039699
-
Multisymplectic geometry, covariant Hamiltonians and water waves
-
Marsden J.E., and Shkoller S. Multisymplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Cambridge Philos. Soc. 125 (1999) 553-575
-
(1999)
Math. Proc. Cambridge Philos. Soc.
, vol.125
, pp. 553-575
-
-
Marsden, J.E.1
Shkoller, S.2
-
32
-
-
0031270094
-
Optimal stability polynomials for splitting methods, with application to the time-dependent Schrödinger equation
-
McLachlan R.I., and Gray S.K. Optimal stability polynomials for splitting methods, with application to the time-dependent Schrödinger equation. Appl. Numer. Math. 25 (1997) 275-286
-
(1997)
Appl. Numer. Math.
, vol.25
, pp. 275-286
-
-
McLachlan, R.I.1
Gray, S.K.2
-
33
-
-
0000088731
-
An improved acceptance procedure for the hybrid Monte Carlo algorithm
-
Neal R.M. An improved acceptance procedure for the hybrid Monte Carlo algorithm. J. Comput. Phys. 111 (1994) 194-203
-
(1994)
J. Comput. Phys.
, vol.111
, pp. 194-203
-
-
Neal, R.M.1
-
34
-
-
0040958769
-
A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation
-
Puzyin I.V., Selin A.V., and Vinitsky S.I. A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation. Comput. Phys. Comm. 123 (1999) 1-6
-
(1999)
Comput. Phys. Comm.
, vol.123
, pp. 1-6
-
-
Puzyin, I.V.1
Selin, A.V.2
Vinitsky, S.I.3
-
35
-
-
0034174119
-
Magnus-factorized method for numerical solving the time-dependent Schrödinger equation
-
Puzyin I.V., Selin A.V., and Vinitsky S.I. Magnus-factorized method for numerical solving the time-dependent Schrödinger equation. Comput. Phys. Comm. 126 (2000) 158-161
-
(2000)
Comput. Phys. Comm.
, vol.126
, pp. 158-161
-
-
Puzyin, I.V.1
Selin, A.V.2
Vinitsky, S.I.3
-
36
-
-
0037175405
-
Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media
-
Ramos J.I. Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media. Appl. Math. Comput. 133 (2002) 1-28
-
(2002)
Appl. Math. Comput.
, vol.133
, pp. 1-28
-
-
Ramos, J.I.1
-
37
-
-
0034687898
-
Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations
-
Reich S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations. J. Comput. Phys. 157 (2000) 473-499
-
(2000)
J. Comput. Phys.
, vol.157
, pp. 473-499
-
-
Reich, S.1
-
39
-
-
77957214313
-
Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation
-
Sanz-Serna J.M., and Verwer J.G. Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6 (1986) 25-42
-
(1986)
IMA J. Numer. Anal.
, vol.6
, pp. 25-42
-
-
Sanz-Serna, J.M.1
Verwer, J.G.2
-
40
-
-
84961470712
-
Methods for numerical solution of the nonlinear Schrödinger equation
-
Sanz-Serna J.M. Methods for numerical solution of the nonlinear Schrödinger equation. Math. Comp. 43 (1984) 21-27
-
(1984)
Math. Comp.
, vol.43
, pp. 21-27
-
-
Sanz-Serna, J.M.1
-
41
-
-
0001028014
-
A method for the integration in time of certain partial differential equations
-
Sanz-Serna J.M., and Manoranjan V.S. A method for the integration in time of certain partial differential equations. J. Comput. Phys. 52 (1983) 273-289
-
(1983)
J. Comput. Phys.
, vol.52
, pp. 273-289
-
-
Sanz-Serna, J.M.1
Manoranjan, V.S.2
-
42
-
-
0000264271
-
Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation
-
Schober C.M. Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation. Phys. Lett. A 259 (1999) 140-151
-
(1999)
Phys. Lett. A
, vol.259
, pp. 140-151
-
-
Schober, C.M.1
-
43
-
-
0034319701
-
Novel soliton solutions of the nonlinear Schrödinger equation model
-
Serkin V.N., and Hasegawa A. Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85 21 (2000) 4502-4505
-
(2000)
Phys. Rev. Lett.
, vol.85
, Issue.21
, pp. 4502-4505
-
-
Serkin, V.N.1
Hasegawa, A.2
-
45
-
-
0010295721
-
Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme
-
Zhang F., Pérez-García V.M., and Vázquez L. Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177
-
(1995)
Appl. Math. Comput.
, vol.71
, pp. 165-177
-
-
Zhang, F.1
Pérez-García, V.M.2
Vázquez, L.3
|