-
2
-
-
7544233484
-
Optical solitons in presence of Kerr dispersion and self-frequency shift
-
Porsezian K., and Nakkeeran K. Optical solitons in presence of Kerr dispersion and self-frequency shift. Phys. Rev. Lett. 76 (1996) 3955-3958
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 3955-3958
-
-
Porsezian, K.1
Nakkeeran, K.2
-
4
-
-
0003172958
-
Pseudo-spectral solution of nonlinear Schrödinger equations
-
Pathria D., and Morris J.L. Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87 (1990) 108-125
-
(1990)
J. Comput. Phys.
, vol.87
, pp. 108-125
-
-
Pathria, D.1
Morris, J.L.2
-
5
-
-
0036532037
-
Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation
-
Chen J.B., Qin M.Z., and Tang Y.F. Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation. Comp. Math. Appl. 43 (2002) 1095-1106
-
(2002)
Comp. Math. Appl.
, vol.43
, pp. 1095-1106
-
-
Chen, J.B.1
Qin, M.Z.2
Tang, Y.F.3
-
7
-
-
48549114390
-
Analytical and numerical aspects of certain nonlinear evolution equations, II: numerical, nonlinear Schrödinger equation
-
Taha T.R., and Ablowitz M.J. Analytical and numerical aspects of certain nonlinear evolution equations, II: numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55 (1984) 203-230
-
(1984)
J. Comput. Phys.
, vol.55
, pp. 203-230
-
-
Taha, T.R.1
Ablowitz, M.J.2
-
8
-
-
0001160015
-
Difference schemes for solving the generalized nonlinear Schrödinger equation
-
Chang Q.S., Jia E.H., and Sun W. Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comp. Phys. 148 (1999) 397-415
-
(1999)
J. Comp. Phys.
, vol.148
, pp. 397-415
-
-
Chang, Q.S.1
Jia, E.H.2
Sun, W.3
-
10
-
-
0001005075
-
Construction of higher order symplectic integrators
-
Yoshida H. Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262-268
-
(1990)
Phys. Lett. A
, vol.150
, pp. 262-268
-
-
Yoshida, H.1
-
11
-
-
0043256997
-
Operator splitting methods for generalized Korteweg-de Vries equations
-
Holden H., Karlsen K.H., and Risebroz N.H. Operator splitting methods for generalized Korteweg-de Vries equations. J. Comp. Phys. 153 (1999) 203-222
-
(1999)
J. Comp. Phys.
, vol.153
, pp. 203-222
-
-
Holden, H.1
Karlsen, K.H.2
Risebroz, N.H.3
-
12
-
-
0037138007
-
On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime
-
Bao W.Z., Jin S., and Markowich P.A. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comp. Phys. 175 (2002) 487-524
-
(2002)
J. Comp. Phys.
, vol.175
, pp. 487-524
-
-
Bao, W.Z.1
Jin, S.2
Markowich, P.A.3
-
13
-
-
1842531889
-
Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes
-
Bao W.Z., Jin S., and Markowich P.A. Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comp. 25 (2003) 27-64
-
(2003)
SIAM J. Sci. Comp.
, vol.25
, pp. 27-64
-
-
Bao, W.Z.1
Jin, S.2
Markowich, P.A.3
-
14
-
-
33748070244
-
System analysis using the split operator method
-
Springer, Heidelberg
-
Blow K.J. System analysis using the split operator method. Lecture Notes in Physics vol. 613 (2003), Springer, Heidelberg 127-140
-
(2003)
Lecture Notes in Physics
, vol.613
, pp. 127-140
-
-
Blow, K.J.1
-
15
-
-
26844436587
-
Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations
-
Wang H.Q. Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations. Appl. Math. Comput. 170 (2005) 17-35
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 17-35
-
-
Wang, H.Q.1
-
16
-
-
9144220381
-
Compact finite difference schemes with spectral-like resolution
-
Lele S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1992) 16-42
-
(1992)
J. Comput. Phys.
, vol.103
, pp. 16-42
-
-
Lele, S.K.1
-
17
-
-
33748060234
-
-
M.W. Reinsch, A simple expression for the terms in the Baker-Campbell-Hausdorff series, preprint, 13 January 2000. http://arxiv.org/abs/math-ph/9905012/.
-
-
-
-
19
-
-
10644227675
-
Higher-order split-step Fourier schemes for the generalized Schrödinger equation
-
Muslu G.M., and Erbay H.A. Higher-order split-step Fourier schemes for the generalized Schrödinger equation. Math. Comput. Simul. 67 (2005) 581-595
-
(2005)
Math. Comput. Simul.
, vol.67
, pp. 581-595
-
-
Muslu, G.M.1
Erbay, H.A.2
|