메뉴 건너뛰기




Volumn 157, Issue 2, 2000, Pages 473-499

Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; NUMERICAL METHODS; ORDINARY DIFFERENTIAL EQUATIONS; RUNGE KUTTA METHODS; WAVE EQUATIONS;

EID: 0034687898     PISSN: 00219991     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcph.1999.6372     Document Type: Article
Times cited : (286)

References (21)
  • 2
    • 21344491735 scopus 로고
    • On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms
    • Benettin G., Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74:1994;1117.
    • (1994) J. Stat. Phys. , vol.74 , pp. 1117
    • Benettin, G.1    Giorgilli, A.2
  • 3
    • 0042137401 scopus 로고    scopus 로고
    • Multi-symplectic structures and wave propagation
    • Bridges Th. J. Multi-symplectic structures and wave propagation. Math. Proc. Cambridge Philos. Soc. 121:1997;147.
    • (1997) Math. Proc. Cambridge Philos. Soc. , vol.121 , pp. 147
    • Bridges, Th.J.1
  • 4
    • 0030695841 scopus 로고    scopus 로고
    • A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
    • Bridges Th. J. A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. R. Soc. London A. 453:1997;1365.
    • (1997) Proc. R. Soc. London A , vol.453 , pp. 1365
    • Bridges, Th.J.1
  • 5
    • 33746421439 scopus 로고    scopus 로고
    • Unstable eigenvalues, and the linearization about solitary waves and fronts with symmetry
    • Bridges Th. J., Derks G. Unstable eigenvalues, and the linearization about solitary waves and fronts with symmetry. Proc. R. Soc. London A. 455:1999;2427.
    • (1999) Proc. R. Soc. London A , vol.455 , pp. 2427
    • Bridges, Th.J.1    Derks, G.2
  • 7
    • 0002211850 scopus 로고
    • Stability of Runge-Kutta methods for trajectory problems
    • Cooper G. J. Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7:1987;1.
    • (1987) IMA J. Numer. Anal. , vol.7 , pp. 1
    • Cooper, G.J.1
  • 8
    • 0001686631 scopus 로고    scopus 로고
    • Symplectic finite difference approximations of the nonlinear Klein-Gordon equation
    • Duncan D. B. Symplectic finite difference approximations of the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 34:1997;1742.
    • (1997) SIAM J. Numer. Anal. , vol.34 , pp. 1742
    • Duncan, D.B.1
  • 10
    • 0002999318 scopus 로고
    • Derivation of the discrete conservation laws for a family of finite difference schemes
    • Jiménez S. Derivation of the discrete conservation laws for a family of finite difference schemes. Appl. Math. Comput. 64:1994;13.
    • (1994) Appl. Math. Comput. , vol.64 , pp. 13
    • Jiménez, S.1
  • 11
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry, variational integrators, and nonlinear PDEs
    • Marsden J. E., Patrick G. P., Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Comm. Math. Phys. 199:1999;351.
    • (1999) Comm. Math. Phys. , vol.199 , pp. 351
    • Marsden, J.E.1    Patrick, G.P.2    Shkoller, S.3
  • 12
    • 0013039699 scopus 로고    scopus 로고
    • Multisymplectic geometry, covariant Hamiltonians and water waves
    • Marsden J. E., Shkoller S. Multisymplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Cambridge Philos. Soc. 125:1999;553.
    • (1999) Math. Proc. Cambridge Philos. Soc. , vol.125 , pp. 553
    • Marsden, J.E.1    Shkoller, S.2
  • 13
    • 34249766017 scopus 로고
    • Symplectic integration of Hamiltonian wave equations
    • McLachlan R. I. Symplectic integration of Hamiltonian wave equations. Numer. Math. 66:1994;465.
    • (1994) Numer. Math. , vol.66 , pp. 465
    • McLachlan, R.I.1
  • 14
    • 0000194427 scopus 로고
    • On the numerical integration of ordinary differential equations by symmetric composition methods
    • McLachlan R. I. On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16:1995;151.
    • (1995) SIAM J. Sci. Comput. , vol.16 , pp. 151
    • McLachlan, R.I.1
  • 15
    • 84965060858 scopus 로고
    • Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation
    • Li S., Vu-Quoc L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32:1995;1839.
    • (1995) SIAM J. Numer. Anal. , vol.32 , pp. 1839
    • Li, S.1    Vu-Quoc, L.2
  • 16
    • 0001444647 scopus 로고    scopus 로고
    • Backward error analysis for numerical integrators
    • Reich S. Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36:1999;1549.
    • (1999) SIAM J. Numer. Anal. , vol.36 , pp. 1549
    • Reich, S.1
  • 19
    • 0000765110 scopus 로고
    • Numerical solution of a nonlinear Klein-Gordon equation
    • Strauss W., Vázquez L. Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28:1978;271.
    • (1978) J. Comput. Phys. , vol.28 , pp. 271
    • Strauss, W.1    Vázquez, L.2
  • 20
    • 0002859047 scopus 로고
    • Integrable discrete-time systems and difference operators
    • Veselov A. P. Integrable discrete-time systems and difference operators. Funktsional. Anal. Prilozhen. 22:1988;1.
    • (1988) Funktsional. Anal. Prilozhen. , vol.22 , pp. 1
    • Veselov, A.P.1
  • 21
    • 0027643950 scopus 로고
    • Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation
    • Vu-Quoc L., Li S. Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation. Comput. Methods Appl. Mech. Eng. 107:1993;341.
    • (1993) Comput. Methods Appl. Mech. Eng. , vol.107 , pp. 341
    • Vu-Quoc, L.1    Li, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.