-
1
-
-
24644472743
-
Linear Crank-Nicholsen scheme for nonlinear Dirac equations
-
A. Alvarez Linear Crank-Nicholsen scheme for nonlinear Dirac equations J. Comput. Phys. 99 1992 348-350
-
(1992)
J. Comput. Phys.
, vol.99
, pp. 348-350
-
-
Alvarez, A.1
-
2
-
-
0008447599
-
Interaction dynamics for the solitary waves of a nonlinear Dirac model
-
A. Alvarez B. Carreras Interaction dynamics for the solitary waves of a nonlinear Dirac model Phys. Lett. 86A 1981 327-332
-
(1981)
Phys. Lett.
, vol.86 A
, pp. 327-332
-
-
Alvarez, A.1
Carreras, B.2
-
3
-
-
0348059253
-
The numerical study of a nonliear one-dimensional Dirac equation
-
A. Alvarez P. Kuo L. Vazquez The numerical study of a nonliear one-dimensional Dirac equation Appl. Math. Comput. 13 1983 1-15
-
(1983)
Appl. Math. Comput.
, vol.13
, pp. 1-15
-
-
Alvarez, A.1
Kuo, P.2
Vazquez, L.3
-
4
-
-
0037832748
-
Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
T.J. Bridges S. Reich Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 284 2001 184-193
-
(2001)
Phys. Lett. A
, vol.284
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
5
-
-
0039657874
-
Split-step spectral schemes for nonlinear Dirac systems
-
J. de Frutos J.M. Sanz-Serna Split-step spectral schemes for nonlinear Dirac systems J. Comput. Phys. 83 1989 407-423
-
(1989)
J. Comput. Phys.
, vol.83
, pp. 407-423
-
-
de Frutos, J.1
Sanz-Serna, J.M.2
-
6
-
-
85009774577
-
The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
-
in press
-
J. Hong H. Liu G. Sun The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs Math. Comput. 2005 in press
-
(2005)
Math. Comput.
-
-
Hong, J.1
Liu, H.2
Sun, G.3
-
7
-
-
3543095217
-
Multi-symplecticity of the central box scheme for a class of Hamiltonian PEDs and a application to quasi-periodically solitary waves
-
J. Hong Y. Liu Multi-symplecticity of the central box scheme for a class of Hamiltonian PEDs and a application to quasi-periodically solitary waves Math. Comput. Model 39 2004 1035-1047
-
(2004)
Math. Comput. Model
, vol.39
, pp. 1035-1047
-
-
Hong, J.1
Liu, Y.2
-
8
-
-
84867955067
-
A novel numerical approach to simulating nonlinear Schrödinger equations with varying coefficients
-
J. Hong Y. Liu A novel numerical approach to simulating nonlinear Schröinger equations with varying coefficients Appl. Math. Lett. 16 2003 759-765
-
(2003)
Appl. Math. Lett.
, vol.16
, pp. 759-765
-
-
Hong, J.1
Liu, Y.2
-
9
-
-
24644469812
-
Some properties of multi-symplectic Runge-Kutta methods for Dirac equations
-
Research Report of ICMSEC
-
J. Hong, C. Li, Some properties of multi-symplectic Runge-Kutta methods for Dirac equations, Research Report of ICMSEC, 2004.
-
(2004)
-
-
Hong, J.1
Li, C.2
-
11
-
-
0035841060
-
Geometric integrators for the nonlinear Schrödinger equation
-
A.L. Islas D.A. Karpeev C.M. Schober Geometric integrators for the nonlinear Schrödinger equation J. Comput. Phys. 173 2001 116-148
-
(2001)
J. Comput. Phys.
, vol.173
, pp. 116-148
-
-
Islas, A.L.1
Karpeev, D.A.2
Schober, C.M.3
-
12
-
-
3242702916
-
On the preservation of phase space structure under multisymplectic discretization
-
A.L. Islas C.M. Schober On the preservation of phase space structure under multisymplectic discretization J. Comput. Phys. 197 2004 585-609
-
(2004)
J. Comput. Phys.
, vol.197
, pp. 585-609
-
-
Islas, A.L.1
Schober, C.M.2
-
13
-
-
0032476963
-
Multisymplectic geometry variational integrators, and nonlinear PDEs
-
J.E. Marsden G.W. Patrick S. Shkoller Multisymplectic geometry variational integrators, and nonlinear PDEs Comm. Math. Phys. 199 1998 351-395
-
(1998)
Comm. Math. Phys.
, vol.199
, pp. 351-395
-
-
Marsden, J.E.1
Patrick, G.W.2
Shkoller, S.3
-
14
-
-
0000140852
-
Variational methods, multisymplectic geometry and continuum mechanics
-
J.E. Marsden S. Pekarsky S. Shkoller M. West Variational methods, multisymplectic geometry and continuum mechanics J. Geo. Phys. 38 3-4 2001 253-284
-
(2001)
J. Geo. Phys.
, vol.38
, Issue.3-4
, pp. 253-284
-
-
Marsden, J.E.1
Pekarsky, S.2
Shkoller, S.3
West, M.4
-
16
-
-
0037400145
-
Multisymplectic integration methods for Hamiltonian PDEs
-
B. Moore S. Reich Multisymplectic integration methods for Hamiltonian PDEs Future Gener. Comput. Syst. 19 2003 395-402
-
(2003)
Future Gener. Comput. Syst.
, vol.19
, pp. 395-402
-
-
Moore, B.1
Reich, S.2
-
17
-
-
0242339583
-
Backward error analysis for multi-symplectic integration methods
-
B. Moore S. Reich Backward error analysis for multi-symplectic integration methods Numer. Math. 95 2003 625-652
-
(2003)
Numer. Math.
, vol.95
, pp. 625-652
-
-
Moore, B.1
Reich, S.2
-
18
-
-
85189845337
-
Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations
-
preprint. Available from
-
M. Oliver, M. West, C. Wulff, Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations, 2004, preprint. Available from:
-
(2004)
-
-
Oliver, M.1
West, M.2
Wulff, C.3
-
19
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
-
S. Reich Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation J. Comput. Phys. 157 2000 473-499
-
(2000)
J. Comput. Phys.
, vol.157
, pp. 473-499
-
-
Reich, S.1
|