메뉴 건너뛰기




Volumn 211, Issue 2, 2006, Pages 448-472

Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations

Author keywords

Conservation laws; Multi symplectic Runge Kutta methods; Nonlinear Dirac equations

Indexed keywords

LINEAR EQUATIONS; MOMENTUM; NONLINEAR EQUATIONS; NUMERICAL METHODS; PHYSICAL PROPERTIES; RELATIVITY;

EID: 26944495302     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2005.06.001     Document Type: Article
Times cited : (93)

References (20)
  • 1
    • 24644472743 scopus 로고
    • Linear Crank-Nicholsen scheme for nonlinear Dirac equations
    • A. Alvarez Linear Crank-Nicholsen scheme for nonlinear Dirac equations J. Comput. Phys. 99 1992 348-350
    • (1992) J. Comput. Phys. , vol.99 , pp. 348-350
    • Alvarez, A.1
  • 2
    • 0008447599 scopus 로고
    • Interaction dynamics for the solitary waves of a nonlinear Dirac model
    • A. Alvarez B. Carreras Interaction dynamics for the solitary waves of a nonlinear Dirac model Phys. Lett. 86A 1981 327-332
    • (1981) Phys. Lett. , vol.86 A , pp. 327-332
    • Alvarez, A.1    Carreras, B.2
  • 3
    • 0348059253 scopus 로고
    • The numerical study of a nonliear one-dimensional Dirac equation
    • A. Alvarez P. Kuo L. Vazquez The numerical study of a nonliear one-dimensional Dirac equation Appl. Math. Comput. 13 1983 1-15
    • (1983) Appl. Math. Comput. , vol.13 , pp. 1-15
    • Alvarez, A.1    Kuo, P.2    Vazquez, L.3
  • 4
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • T.J. Bridges S. Reich Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 284 2001 184-193
    • (2001) Phys. Lett. A , vol.284 , pp. 184-193
    • Bridges, T.J.1    Reich, S.2
  • 5
    • 0039657874 scopus 로고
    • Split-step spectral schemes for nonlinear Dirac systems
    • J. de Frutos J.M. Sanz-Serna Split-step spectral schemes for nonlinear Dirac systems J. Comput. Phys. 83 1989 407-423
    • (1989) J. Comput. Phys. , vol.83 , pp. 407-423
    • de Frutos, J.1    Sanz-Serna, J.M.2
  • 6
    • 85009774577 scopus 로고    scopus 로고
    • The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
    • in press
    • J. Hong H. Liu G. Sun The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs Math. Comput. 2005 in press
    • (2005) Math. Comput.
    • Hong, J.1    Liu, H.2    Sun, G.3
  • 7
    • 3543095217 scopus 로고    scopus 로고
    • Multi-symplecticity of the central box scheme for a class of Hamiltonian PEDs and a application to quasi-periodically solitary waves
    • J. Hong Y. Liu Multi-symplecticity of the central box scheme for a class of Hamiltonian PEDs and a application to quasi-periodically solitary waves Math. Comput. Model 39 2004 1035-1047
    • (2004) Math. Comput. Model , vol.39 , pp. 1035-1047
    • Hong, J.1    Liu, Y.2
  • 8
    • 84867955067 scopus 로고    scopus 로고
    • A novel numerical approach to simulating nonlinear Schrödinger equations with varying coefficients
    • J. Hong Y. Liu A novel numerical approach to simulating nonlinear Schröinger equations with varying coefficients Appl. Math. Lett. 16 2003 759-765
    • (2003) Appl. Math. Lett. , vol.16 , pp. 759-765
    • Hong, J.1    Liu, Y.2
  • 9
    • 24644469812 scopus 로고    scopus 로고
    • Some properties of multi-symplectic Runge-Kutta methods for Dirac equations
    • Research Report of ICMSEC
    • J. Hong, C. Li, Some properties of multi-symplectic Runge-Kutta methods for Dirac equations, Research Report of ICMSEC, 2004.
    • (2004)
    • Hong, J.1    Li, C.2
  • 11
    • 0035841060 scopus 로고    scopus 로고
    • Geometric integrators for the nonlinear Schrödinger equation
    • A.L. Islas D.A. Karpeev C.M. Schober Geometric integrators for the nonlinear Schrödinger equation J. Comput. Phys. 173 2001 116-148
    • (2001) J. Comput. Phys. , vol.173 , pp. 116-148
    • Islas, A.L.1    Karpeev, D.A.2    Schober, C.M.3
  • 12
    • 3242702916 scopus 로고    scopus 로고
    • On the preservation of phase space structure under multisymplectic discretization
    • A.L. Islas C.M. Schober On the preservation of phase space structure under multisymplectic discretization J. Comput. Phys. 197 2004 585-609
    • (2004) J. Comput. Phys. , vol.197 , pp. 585-609
    • Islas, A.L.1    Schober, C.M.2
  • 13
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry variational integrators, and nonlinear PDEs
    • J.E. Marsden G.W. Patrick S. Shkoller Multisymplectic geometry variational integrators, and nonlinear PDEs Comm. Math. Phys. 199 1998 351-395
    • (1998) Comm. Math. Phys. , vol.199 , pp. 351-395
    • Marsden, J.E.1    Patrick, G.W.2    Shkoller, S.3
  • 14
    • 0000140852 scopus 로고    scopus 로고
    • Variational methods, multisymplectic geometry and continuum mechanics
    • J.E. Marsden S. Pekarsky S. Shkoller M. West Variational methods, multisymplectic geometry and continuum mechanics J. Geo. Phys. 38 3-4 2001 253-284
    • (2001) J. Geo. Phys. , vol.38 , Issue.3-4 , pp. 253-284
    • Marsden, J.E.1    Pekarsky, S.2    Shkoller, S.3    West, M.4
  • 16
    • 0037400145 scopus 로고    scopus 로고
    • Multisymplectic integration methods for Hamiltonian PDEs
    • B. Moore S. Reich Multisymplectic integration methods for Hamiltonian PDEs Future Gener. Comput. Syst. 19 2003 395-402
    • (2003) Future Gener. Comput. Syst. , vol.19 , pp. 395-402
    • Moore, B.1    Reich, S.2
  • 17
    • 0242339583 scopus 로고    scopus 로고
    • Backward error analysis for multi-symplectic integration methods
    • B. Moore S. Reich Backward error analysis for multi-symplectic integration methods Numer. Math. 95 2003 625-652
    • (2003) Numer. Math. , vol.95 , pp. 625-652
    • Moore, B.1    Reich, S.2
  • 18
    • 85189845337 scopus 로고    scopus 로고
    • Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations
    • preprint. Available from
    • M. Oliver, M. West, C. Wulff, Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations, 2004, preprint. Available from:
    • (2004)
    • Oliver, M.1    West, M.2    Wulff, C.3
  • 19
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
    • S. Reich Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation J. Comput. Phys. 157 2000 473-499
    • (2000) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.