메뉴 건너뛰기




Volumn 2, Issue 4, 2007, Pages 662-683

Explicit multi-symplectic methods for Hamiltonian wave equations

Author keywords

Hamiltonian wave equations; Multi symplectic integration; Symplectic Rung Kutta Nystr m methods; Symplectic Runge Kutta methods

Indexed keywords


EID: 38849102343     PISSN: 18152406     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (18)
  • 1
    • 1042304391 scopus 로고    scopus 로고
    • Multisymplectic box schemes and the Korteweg-de Vries equation
    • U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269.
    • (2004) Appl. Numer. Math , vol.48 , pp. 255-269
    • Ascher, U.M.1    McLachlan, R.I.2
  • 2
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • T. J. Bridges and S. Reich, Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), 491-504.
    • (2001) Phys. Lett. A , vol.284 , pp. 491-504
    • Bridges, T.J.1    Reich, S.2
  • 3
    • 33646388286 scopus 로고
    • Fourth order symplectic integration
    • E. Forest and R. D. Ruth, Fourth order symplectic integration, Physica D, 43 (1990), 105-117.
    • (1990) Physica D , vol.43 , pp. 105-117
    • Forest, E.1    Ruth, R.D.2
  • 4
    • 34249890092 scopus 로고    scopus 로고
    • A survey of multi-symplectic Runge-Kutta type methods for Hamiltonlian partial differential equations
    • T. Li and P. Zhang Eds, Frontiers and Prospects of Contemporary Applied Mathematics, Higher Education Press, Word Scientific Beijing
    • J. Hong, A survey of multi-symplectic Runge-Kutta type methods for Hamiltonlian partial differential equations, in: T. Li and P. Zhang (Eds.), Frontiers and Prospects of Contemporary Applied Mathematics, Series in Contemporary Applied Mathematics, Higher Education Press, Word Scientific Beijing, Vol. 6, 2005, pp. 71-113.
    • (2005) Series in Contemporary Applied Mathematics , vol.6 , pp. 71-113
    • Hong, J.1
  • 5
    • 26944495302 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
    • J. Hong and C. Li, Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations, J. Comput. Phys., 211 (2006), 448-472.
    • (2006) J. Comput. Phys , vol.211 , pp. 448-472
    • Hong, J.1    Li, C.2
  • 6
    • 85009774577 scopus 로고    scopus 로고
    • The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
    • J. Hong, H. Liu and G. Sun, The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs, Math. Comput., 75(253) (2006), 167-181.
    • (2006) Math. Comput , vol.75 , Issue.253 , pp. 167-181
    • Hong, J.1    Liu, H.2    Sun, G.3
  • 8
    • 38849160310 scopus 로고    scopus 로고
    • A multi-symplectic integration algorithm for some Hamiltonian PDEs
    • preprint
    • S. Jiang, C. Li, H. Liu and K. Zhang, A multi-symplectic integration algorithm for some Hamiltonian PDEs, preprint, 2006.
    • (2006)
    • Jiang, S.1    Li, C.2    Liu, H.3    Zhang, K.4
  • 10
    • 34547507895 scopus 로고    scopus 로고
    • Recent progress in symplectic algorithms for use in quantum systems
    • X. Liu, Y. Qi, J. He and P. Ding, Recent progress in symplectic algorithms for use in quantum systems, Commun. Comput. Phys., 2 (2007), 1-53.
    • (2007) Commun. Comput. Phys , vol.2 , pp. 1-53
    • Liu, X.1    Qi, Y.2    He, J.3    Ding, P.4
  • 11
    • 33645743266 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations
    • H. Liu and K. Zhang, Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations, IMA J. Numer. Anal., 26 (2006), 252-271.
    • (2006) IMA J. Numer. Anal , vol.26 , pp. 252-271
    • Liu, H.1    Zhang, K.2
  • 12
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry, variational integrators, and nonlinear PDEs
    • J. M. Marsden, G. P. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199(2) (1999), 351-395.
    • (1999) Commun. Math. Phys , vol.199 , Issue.2 , pp. 351-395
    • Marsden, J.M.1    Patrick, G.P.2    Shkoller, S.3
  • 13
    • 84968505707 scopus 로고
    • Explicit canonical methods for Hamiltonian systems
    • D. Okunbor and R. D. Skeel, Explicit canonical methods for Hamiltonian systems, Math. Comput., 59(200) (1992), 439-455.
    • (1992) Math. Comput , vol.59 , Issue.200 , pp. 439-455
    • Okunbor, D.1    Skeel, R.D.2
  • 14
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
    • S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), 473-499.
    • (2000) J. Comput. Phys , vol.157 , pp. 473-499
    • Reich, S.1
  • 16
    • 38849156628 scopus 로고    scopus 로고
    • Multi-sympleciticity of Nyström methods
    • preprint
    • Y. Sun, Multi-sympleciticity of Nyström methods, preprint, 2004.
    • (2004)
    • Sun, Y.1
  • 17
    • 33144468570 scopus 로고    scopus 로고
    • A simple way of constructing symplectic Runge-Kutta methods
    • G. Sun, A simple way of constructing symplectic Runge-Kutta methods, J. Comput. Math., 18 (2000), 61-68.
    • (2000) J. Comput. Math , vol.18 , pp. 61-68
    • Sun, G.1
  • 18
    • 38849177131 scopus 로고    scopus 로고
    • Y. B. Suris, The canonicity of mappings generated by Runge-Kutta type methods when integrating the system ẍ = -∂U/∂x, Zh. Vychisl. Mat. i Mat. Fiz., 29 (1989), 202-211; U.S.S.R. Comput. Math. Math. Phys., 29 (1989), 138-144 (English translation).
    • Y. B. Suris, The canonicity of mappings generated by Runge-Kutta type methods when integrating the system ẍ = -∂U/∂x, Zh. Vychisl. Mat. i Mat. Fiz., 29 (1989), 202-211; U.S.S.R. Comput. Math. Math. Phys., 29 (1989), 138-144 (English translation).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.