메뉴 건너뛰기




Volumn 73, Issue 7-9, 2010, Pages 1272-1280

AUC maximization linear classifier based on active learning and its application

Author keywords

Active learning; AUC maximization; Dynamic clustering; Gradient descent method; Linear classifier; Obstacle detection

Indexed keywords

ACTIVE LEARNING; DYNAMIC CLUSTERING; GRADIENT DESCENT METHOD; LINEAR CLASSIFIERS; OBSTACLE DETECTION;

EID: 77649231232     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.01.001     Document Type: Article
Times cited : (10)

References (50)
  • 5
    • 48149091075 scopus 로고    scopus 로고
    • Maximizing area under ROC curve for biometric scores fusion
    • Toh K.A., Kim J., and Lee S. Maximizing area under ROC curve for biometric scores fusion. Pattern Recognition 41 (2008) 3373-3392
    • (2008) Pattern Recognition , vol.41 , pp. 3373-3392
    • Toh, K.A.1    Kim, J.2    Lee, S.3
  • 6
    • 39149090650 scopus 로고    scopus 로고
    • Maximizing the area under the ROC curve by pairwise feature combination
    • Marroccoa C., Duinb R.P.W., and Tortorellaa F. Maximizing the area under the ROC curve by pairwise feature combination. Pattern Recognition 41 (2008) 1961-1974
    • (2008) Pattern Recognition , vol.41 , pp. 1961-1974
    • Marroccoa, C.1    Duinb, R.P.W.2    Tortorellaa, F.3
  • 8
    • 9144265616 scopus 로고    scopus 로고
    • Obstacle detection and terrain classification for autonomous off-road navigation
    • Manduchi R. Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots 18 1 (2005) 81-102
    • (2005) Autonomous Robots , vol.18 , Issue.1 , pp. 81-102
    • Manduchi, R.1
  • 9
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S., and Koller D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research 2 (2002) 45-66
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 10
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • Vlachos A. A stopping criterion for active learning. Computer Speech and Language 22 (2008) 295-312
    • (2008) Computer Speech and Language , vol.22 , pp. 295-312
    • Vlachos, A.1
  • 11
  • 12
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 27 (2006) 861-874
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 16
    • 32044454593 scopus 로고    scopus 로고
    • Determination and interpretation of the Optimal Operating Pointoptimal operating point for ROC Curvescurves derived through generalized linear models
    • Robert J.G., Crits-Christoph P., Muenz L.R., et al. Determination and interpretation of the Optimal Operating Pointoptimal operating point for ROC Curvescurves derived through generalized linear models. Understanding Statistics 2 4 (2003) 219-242
    • (2003) Understanding Statistics , vol.2 , Issue.4 , pp. 219-242
    • Robert, J.G.1    Crits-Christoph, P.2    Muenz, L.R.3
  • 17
    • 32044457458 scopus 로고    scopus 로고
    • A study of Gaussian mixture models of color and texture features for image classification and segmentation
    • Permuter H., and Jermyn J. A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognition 39 (2006) 695-706
    • (2006) Pattern Recognition , vol.39 , pp. 695-706
    • Permuter, H.1    Jermyn, J.2
  • 19
    • 45949086719 scopus 로고    scopus 로고
    • Active learning methods for interactive image retrieval
    • Gosselin P.H., and Cord M. Active learning methods for interactive image retrieval. IEEE Transactions on Image Processing 17 7 (2008) 1200-1211
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.7 , pp. 1200-1211
    • Gosselin, P.H.1    Cord, M.2
  • 25
    • 33646590655 scopus 로고    scopus 로고
    • Exploiting ACU for optimal linear combination of dichotomizers
    • Marrocco C., Molinara M., and Tortorella F. Exploiting ACU for optimal linear combination of dichotomizers. Pattern Recognition Letters 27 8 (2006) 900-907
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 900-907
    • Marrocco, C.1    Molinara, M.2    Tortorella, F.3
  • 30
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30 7 (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 33
    • 0003260442 scopus 로고    scopus 로고
    • Combining statistical learning with a knowledge-based approach - A case study in intensive care monitoring
    • Bled, Slovenia
    • K. Morik, P. Brockhausen, T. Joachims, Combining statistical learning with a knowledge-based approach - A case study in intensive care monitoring, in: Proc.eedings of the International Conference on Machine Learning, Bled, Slovenia, (1999), pp. 268-277.
    • (1999) Proc.eedings of the International Conference on Machine Learning , pp. 268-277
    • Morik, K.1    Brockhausen, P.2    Joachims, T.3
  • 34
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Lin Y., Lee Y., and Wahba G. Support vector machines for classification in nonstandard situations. Machine Learning 46 (2002) 191-202
    • (2002) Machine Learning , Issue.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 37
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve for multiple class classification problems
    • Hand D.J., and Till R.J. A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning 45 (2001) 171-186
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 38
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 3 (2001) 203-231
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 41
    • 49549139345 scopus 로고
    • The area above the ordinal dominance graph and the area below the receiver operating characteristic graph
    • Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12 (1975) 387-415
    • (1975) Journal of Mathematical Psychology , Issue.12 , pp. 387-415
    • Bamber, D.1
  • 47
    • 77649231542 scopus 로고    scopus 로고
    • C. Dima, Active Learninglearning for Outdoor Perceptionoutdoor perception, Ph.D. thesisThesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, (2005).
    • C. Dima, Active Learninglearning for Outdoor Perceptionoutdoor perception, Ph.D. thesisThesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, (2005).
  • 49
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y., Sebastian Seung H., Shamir E., et al. Selective sampling using the query by committee algorithm. Machine Learning 28 2-3 (1997) 133-168
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Sebastian Seung, H.2    Shamir, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.