메뉴 건너뛰기




Volumn 27, Issue 8, 2006, Pages 900-907

Exploiting AUC for optimal linear combinations of dichotomizers

Author keywords

AUC; Linear combiners; Multiple classifier systems; ROC curve; Two class classifiers

Indexed keywords

LINEAR SYSTEMS; OPTIMAL SYSTEMS; PATTERN RECOGNITION; PROBLEM SOLVING;

EID: 33646590655     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.10.014     Document Type: Article
Times cited : (17)

References (18)
  • 1
    • 33646541921 scopus 로고    scopus 로고
    • Blake, C., Keogh, E., Merz, C.J., 1998. UCI Repository of Machine Learning Databases. Available from: .
  • 2
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 3
    • 33646583122 scopus 로고    scopus 로고
    • Cortes, C., Mohri, M., 2003. AUC optimization vs. error rate minimization. Advances in Neural Information Processing Systems (NIPS 2003).
  • 4
    • 33646549843 scopus 로고    scopus 로고
    • Fawcett, T., 2003. ROC graphs: Notes and practical considerations for data mining researchers. HP Labs Tech Report HPL-2003-4.
  • 5
    • 1942421135 scopus 로고    scopus 로고
    • Flach, P.A., 2003. The geometry of ROC space: Understanding machine learning metrics through ROC isometrics. In: Proc. Internat. Conf. on Machine Learning (ICML-2003).
  • 6
    • 10044294326 scopus 로고    scopus 로고
    • Differentiating functions of the Jacobian with respect to the weights
    • Solla S.A., Leen T.K., and Müller K. (Eds), The MIT Press
    • Flake G.W., and Pearlmuter B.A. Differentiating functions of the Jacobian with respect to the weights. In: Solla S.A., Leen T.K., and Müller K. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), The MIT Press
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Flake, G.W.1    Pearlmuter, B.A.2
  • 8
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve for multiple class classification problems
    • Hand D.J., and Till R.J. A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning 45 (2001) 171-186
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 9
    • 0020083498 scopus 로고
    • The meaning and the use of the area under a receiver operating characteristic curve
    • Hanley J.A., and McNeil B.J. The meaning and the use of the area under a receiver operating characteristic curve. Radiology 143 (1982) 29-36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 10
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • Huang J., and Ling C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowledge Data Eng. 17 (2005) 299-310
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 11
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press
    • Joachims T. Making large-scale SVM learning practical. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press 169-184
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 12
    • 0002322469 scopus 로고
    • On a test whether one of two random variable is stochastically larger than the other
    • Mann H.B., and Whitney D.R. On a test whether one of two random variable is stochastically larger than the other. Ann. Math. Statist. 18 (1947) 50-60
    • (1947) Ann. Math. Statist. , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 13
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 (2001) 203-231
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 15
    • 33646544637 scopus 로고    scopus 로고
    • Rakotomamonjy, A., 2004. Optimizing area under ROC curve with SVMs. Workshop on ROC Analysis in Artificial Intelligence.
  • 16
    • 14344255185 scopus 로고    scopus 로고
    • Rosset, S., 2004. Model selection via the AUC. In: Proc. Internat. Conf. on Machine Learning (ICML-2004).
  • 17
    • 10044230249 scopus 로고    scopus 로고
    • A ROC-based reject rule for dichotomizers
    • Tortorella F. A ROC-based reject rule for dichotomizers. Pattern Recognition Lett. 26 (2005) 167-180
    • (2005) Pattern Recognition Lett. , vol.26 , pp. 167-180
    • Tortorella, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.