-
1
-
-
33646541921
-
-
Blake, C., Keogh, E., Merz, C.J., 1998. UCI Repository of Machine Learning Databases. Available from: .
-
-
-
-
2
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997) 1145-1159
-
(1997)
Pattern Recognition
, vol.30
, pp. 1145-1159
-
-
Bradley, A.P.1
-
3
-
-
33646583122
-
-
Cortes, C., Mohri, M., 2003. AUC optimization vs. error rate minimization. Advances in Neural Information Processing Systems (NIPS 2003).
-
-
-
-
4
-
-
33646549843
-
-
Fawcett, T., 2003. ROC graphs: Notes and practical considerations for data mining researchers. HP Labs Tech Report HPL-2003-4.
-
-
-
-
5
-
-
1942421135
-
-
Flach, P.A., 2003. The geometry of ROC space: Understanding machine learning metrics through ROC isometrics. In: Proc. Internat. Conf. on Machine Learning (ICML-2003).
-
-
-
-
6
-
-
10044294326
-
Differentiating functions of the Jacobian with respect to the weights
-
Solla S.A., Leen T.K., and Müller K. (Eds), The MIT Press
-
Flake G.W., and Pearlmuter B.A. Differentiating functions of the Jacobian with respect to the weights. In: Solla S.A., Leen T.K., and Müller K. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), The MIT Press
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
-
-
Flake, G.W.1
Pearlmuter, B.A.2
-
8
-
-
0003562954
-
A simple generalization of the area under the ROC curve for multiple class classification problems
-
Hand D.J., and Till R.J. A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning 45 (2001) 171-186
-
(2001)
Machine Learning
, vol.45
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
9
-
-
0020083498
-
The meaning and the use of the area under a receiver operating characteristic curve
-
Hanley J.A., and McNeil B.J. The meaning and the use of the area under a receiver operating characteristic curve. Radiology 143 (1982) 29-36
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
10
-
-
14644390912
-
Using AUC and accuracy in evaluating learning algorithms
-
Huang J., and Ling C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowledge Data Eng. 17 (2005) 299-310
-
(2005)
IEEE Trans. Knowledge Data Eng.
, vol.17
, pp. 299-310
-
-
Huang, J.1
Ling, C.X.2
-
11
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press
-
Joachims T. Making large-scale SVM learning practical. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press 169-184
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
12
-
-
0002322469
-
On a test whether one of two random variable is stochastically larger than the other
-
Mann H.B., and Whitney D.R. On a test whether one of two random variable is stochastically larger than the other. Ann. Math. Statist. 18 (1947) 50-60
-
(1947)
Ann. Math. Statist.
, vol.18
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
-
13
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 (2001) 203-231
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
15
-
-
33646544637
-
-
Rakotomamonjy, A., 2004. Optimizing area under ROC curve with SVMs. Workshop on ROC Analysis in Artificial Intelligence.
-
-
-
-
16
-
-
14344255185
-
-
Rosset, S., 2004. Model selection via the AUC. In: Proc. Internat. Conf. on Machine Learning (ICML-2004).
-
-
-
-
17
-
-
10044230249
-
A ROC-based reject rule for dichotomizers
-
Tortorella F. A ROC-based reject rule for dichotomizers. Pattern Recognition Lett. 26 (2005) 167-180
-
(2005)
Pattern Recognition Lett.
, vol.26
, pp. 167-180
-
-
Tortorella, F.1
|