-
1
-
-
12344304266
-
Gene selection using a two-level hierarchical Bayesian model
-
Bae K., and Mallick B. Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20 18 (2004) 3423-3430
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3423-3430
-
-
Bae, K.1
Mallick, B.2
-
2
-
-
0001731811
-
The identification of linear and nonlinear models of a turbocharged automotive diesel engine
-
Billings S., Chen S., and Backhouse R. The identification of linear and nonlinear models of a turbocharged automotive diesel engine. Mechanical Systems and Signal Processing 3 2 (1989) 123-142
-
(1989)
Mechanical Systems and Signal Processing
, vol.3
, Issue.2
, pp. 123-142
-
-
Billings, S.1
Chen, S.2
Backhouse, R.3
-
3
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
Chen S. Local regularization assisted orthogonal least squares regression. NeuroComputing 69 (2006) 559-585
-
(2006)
NeuroComputing
, vol.69
, pp. 559-585
-
-
Chen, S.1
-
4
-
-
38649088632
-
An orthogonal forward regression technique for sparse kernel density estimation
-
Chen S., Hong X., and Harris C. An orthogonal forward regression technique for sparse kernel density estimation. Neurocomputing 71 (2008) 931-943
-
(2008)
Neurocomputing
, vol.71
, pp. 931-943
-
-
Chen, S.1
Hong, X.2
Harris, C.3
-
5
-
-
0011629845
-
A direct active set algorithm for large sparse quadratic programs with simple bounds
-
Coleman T.F., and Hulbert L.A. A direct active set algorithm for large sparse quadratic programs with simple bounds. Mathematical Programming 45 1-3 (1989) 373-406
-
(1989)
Mathematical Programming
, vol.45
, Issue.1-3
, pp. 373-406
-
-
Coleman, T.F.1
Hulbert, L.A.2
-
6
-
-
7044231546
-
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
-
Daubechies I., Defrise M., and DeMol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57 11 (2004) 1413-1457
-
(2004)
Communications on Pure and Applied Mathematics
, vol.57
, Issue.11
, pp. 1413-1457
-
-
Daubechies, I.1
Defrise, M.2
DeMol, C.3
-
8
-
-
16344396421
-
Accurate identification of alternatively spliced exons using support vector machine
-
Dror G., Sorek R., and Shamir S. Accurate identification of alternatively spliced exons using support vector machine. Bioinformatics 21 7 (2005) 897-901
-
(2005)
Bioinformatics
, vol.21
, Issue.7
, pp. 897-901
-
-
Dror, G.1
Sorek, R.2
Shamir, S.3
-
10
-
-
39449126969
-
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
-
Figueiredo M., Nowak R., and Wright S. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1 4 (2007) 586-597
-
(2007)
IEEE Journal of Selected Topics in Signal Processing
, vol.1
, Issue.4
, pp. 586-597
-
-
Figueiredo, M.1
Nowak, R.2
Wright, S.3
-
11
-
-
0002432565
-
Multivariable adaptive regression splines
-
Friedman J. Multivariable adaptive regression splines. The Annals of Statistics 19 1 (1991) 1-57
-
(1991)
The Annals of Statistics
, vol.19
, Issue.1
, pp. 1-57
-
-
Friedman, J.1
-
13
-
-
38349073064
-
Robust L1 principal component analysis and its Bayesian variational inference
-
Gao J. Robust L1 principal component analysis and its Bayesian variational inference. Neural Computation 20 (2008) 555-572
-
(2008)
Neural Computation
, vol.20
, pp. 555-572
-
-
Gao, J.1
-
14
-
-
58349096559
-
L1 LASSO and its Bayesian inference
-
Wobcke W., and Zhang M. (Eds)
-
Gao J., Antolovich M., and Kwan P.H. L1 LASSO and its Bayesian inference. In: Wobcke W., and Zhang M. (Eds). Lecture notes in computer science Vol. 5360 (2008) 318-324
-
(2008)
Lecture notes in computer science
, vol.5360
, pp. 318-324
-
-
Gao, J.1
Antolovich, M.2
Kwan, P.H.3
-
15
-
-
82155175029
-
Adapting kernels by variational approach in SVM
-
McKay B., and Slaney J. (Eds), Springer, Berlin
-
Gao J., Gunn S., and Kandola J. Adapting kernels by variational approach in SVM. In: McKay B., and Slaney J. (Eds). Lecture notes on artificial intelligence Vol. 2557 (2002), Springer, Berlin 395-406
-
(2002)
Lecture notes on artificial intelligence
, vol.2557
, pp. 395-406
-
-
Gao, J.1
Gunn, S.2
Kandola, J.3
-
16
-
-
0035461049
-
On a class of support vector kernels based on frames in function hilbert spaces
-
Gao J., Harris C., and Gunn S. On a class of support vector kernels based on frames in function hilbert spaces. Neural Computation 13 9 (2001) 1975-1994
-
(2001)
Neural Computation
, vol.13
, Issue.9
, pp. 1975-1994
-
-
Gao, J.1
Harris, C.2
Gunn, S.3
-
17
-
-
34548455315
-
Critical vector learning to construct sparse kernel regression modelling
-
Gao J., Shi D., and Liu X. Critical vector learning to construct sparse kernel regression modelling. Neural Networks 20 7 (2007) 791-798
-
(2007)
Neural Networks
, vol.20
, Issue.7
, pp. 791-798
-
-
Gao, J.1
Shi, D.2
Liu, X.3
-
18
-
-
38349060081
-
Mixture of the robust L1 distributions and its applications
-
Gao J., and Xu R. Mixture of the robust L1 distributions and its applications. Lecture notes in artificial intelligence Vol. 4830 (2007) 26-35
-
(2007)
Lecture notes in artificial intelligence
, vol.4830
, pp. 26-35
-
-
Gao, J.1
Xu, R.2
-
19
-
-
0003684449
-
The elements of statistical learning: Data mining, inference, and prediction
-
Springer, Berlin
-
Hastie T., Tibshirani R., and Friedman J. The elements of statistical learning: Data mining, inference, and prediction. Springer series in statistics (2001), Springer, Berlin
-
(2001)
Springer series in statistics
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
0347296051
-
Application of the kernel method to the inverse geosounding problem
-
Hidalgo H., Sosa S., and Gómez-Trevino E. Application of the kernel method to the inverse geosounding problem. Neural Networks 16 (2003) 349-353
-
(2003)
Neural Networks
, vol.16
, pp. 349-353
-
-
Hidalgo, H.1
Sosa, S.2
Gómez-Trevino, E.3
-
21
-
-
0001025418
-
Bayesian interpolation
-
MacKay D. Bayesian interpolation. Neural Computation 4 3 (1992) 415-447
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.1
-
26
-
-
1942418470
-
Grafting: Fast, incremental feature selection by gradient descent in function space
-
Perkins S., Lacker K., and Theiler J. Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research 3 (2003) 1333-1356
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1333-1356
-
-
Perkins, S.1
Lacker, K.2
Theiler, J.3
-
27
-
-
0008197560
-
On the noise model of support vector machine regression
-
AI Laboratory, MIT
-
Pontil M., Mukherjee S., and Girosi F. On the noise model of support vector machine regression. A.I. Memo Vol. 1651 (1998), AI Laboratory, MIT
-
(1998)
A.I. Memo
, vol.1651
-
-
Pontil, M.1
Mukherjee, S.2
Girosi, F.3
-
29
-
-
38049108135
-
Fast optimization methods for L1 regularization: A comparative study and two new approaches
-
Schmidt M., Fung F., and Rosales R. Fast optimization methods for L1 regularization: A comparative study and two new approaches. Lecture Notes in Computer Science 4701 (2007) 286-297
-
(2007)
Lecture Notes in Computer Science
, vol.4701
, pp. 286-297
-
-
Schmidt, M.1
Fung, F.2
Rosales, R.3
-
31
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J., Gestel T., DeBrabanter J., DeMoor B., and Vandewalle J. Least square support vector machines (2002), World Scientific, Singapore
-
(2002)
Least square support vector machines
-
-
Suykens, J.1
Gestel, T.2
DeBrabanter, J.3
DeMoor, B.4
Vandewalle, J.5
-
33
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping M. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.1
-
35
-
-
84862283286
-
The kernel path in kernelized LASSO
-
MIT Press, San Juan, Puerto Rico
-
Wang G., Yeung D.Y., and Lochovsky F. The kernel path in kernelized LASSO. International conference on artificial intelligence and statistics (2007), MIT Press, San Juan, Puerto Rico 580-587
-
(2007)
International conference on artificial intelligence and statistics
, pp. 580-587
-
-
Wang, G.1
Yeung, D.Y.2
Lochovsky, F.3
|