메뉴 건너뛰기




Volumn 23, Issue 2, 2010, Pages 257-264

Sparse kernel learning with LASSO and Bayesian inference algorithm

Author keywords

Bayesian inference; Kernel models; LASSO; RVM

Indexed keywords

BAYESIAN INFERENCE; BAYESIAN LEARNING; COMPUTATIONAL ADVANTAGES; HYPERPARAMETERS; KERNEL MODELS; LEARNING KERNELS; LECTURE NOTES; LOCAL REGULARIZATION; ORTHOGONAL LEAST SQUARES; PUERTO RICO; RELEVANCE VECTOR MACHINE; ROBUST LEARNING ALGORITHM; SPARSE KERNELS; SPARSE REGRESSION; STATE-OF-THE-ART METHODS;

EID: 73949113489     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.07.001     Document Type: Article
Times cited : (130)

References (36)
  • 1
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae K., and Mallick B. Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20 18 (2004) 3423-3430
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3423-3430
    • Bae, K.1    Mallick, B.2
  • 2
    • 0001731811 scopus 로고
    • The identification of linear and nonlinear models of a turbocharged automotive diesel engine
    • Billings S., Chen S., and Backhouse R. The identification of linear and nonlinear models of a turbocharged automotive diesel engine. Mechanical Systems and Signal Processing 3 2 (1989) 123-142
    • (1989) Mechanical Systems and Signal Processing , vol.3 , Issue.2 , pp. 123-142
    • Billings, S.1    Chen, S.2    Backhouse, R.3
  • 3
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen S. Local regularization assisted orthogonal least squares regression. NeuroComputing 69 (2006) 559-585
    • (2006) NeuroComputing , vol.69 , pp. 559-585
    • Chen, S.1
  • 4
    • 38649088632 scopus 로고    scopus 로고
    • An orthogonal forward regression technique for sparse kernel density estimation
    • Chen S., Hong X., and Harris C. An orthogonal forward regression technique for sparse kernel density estimation. Neurocomputing 71 (2008) 931-943
    • (2008) Neurocomputing , vol.71 , pp. 931-943
    • Chen, S.1    Hong, X.2    Harris, C.3
  • 5
    • 0011629845 scopus 로고
    • A direct active set algorithm for large sparse quadratic programs with simple bounds
    • Coleman T.F., and Hulbert L.A. A direct active set algorithm for large sparse quadratic programs with simple bounds. Mathematical Programming 45 1-3 (1989) 373-406
    • (1989) Mathematical Programming , vol.45 , Issue.1-3 , pp. 373-406
    • Coleman, T.F.1    Hulbert, L.A.2
  • 6
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies I., Defrise M., and DeMol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57 11 (2004) 1413-1457
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    DeMol, C.3
  • 8
    • 16344396421 scopus 로고    scopus 로고
    • Accurate identification of alternatively spliced exons using support vector machine
    • Dror G., Sorek R., and Shamir S. Accurate identification of alternatively spliced exons using support vector machine. Bioinformatics 21 7 (2005) 897-901
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 897-901
    • Dror, G.1    Sorek, R.2    Shamir, S.3
  • 10
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Figueiredo M., Nowak R., and Wright S. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1 4 (2007) 586-597
    • (2007) IEEE Journal of Selected Topics in Signal Processing , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.1    Nowak, R.2    Wright, S.3
  • 11
    • 0002432565 scopus 로고
    • Multivariable adaptive regression splines
    • Friedman J. Multivariable adaptive regression splines. The Annals of Statistics 19 1 (1991) 1-57
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-57
    • Friedman, J.1
  • 13
    • 38349073064 scopus 로고    scopus 로고
    • Robust L1 principal component analysis and its Bayesian variational inference
    • Gao J. Robust L1 principal component analysis and its Bayesian variational inference. Neural Computation 20 (2008) 555-572
    • (2008) Neural Computation , vol.20 , pp. 555-572
    • Gao, J.1
  • 14
    • 58349096559 scopus 로고    scopus 로고
    • L1 LASSO and its Bayesian inference
    • Wobcke W., and Zhang M. (Eds)
    • Gao J., Antolovich M., and Kwan P.H. L1 LASSO and its Bayesian inference. In: Wobcke W., and Zhang M. (Eds). Lecture notes in computer science Vol. 5360 (2008) 318-324
    • (2008) Lecture notes in computer science , vol.5360 , pp. 318-324
    • Gao, J.1    Antolovich, M.2    Kwan, P.H.3
  • 15
    • 82155175029 scopus 로고    scopus 로고
    • Adapting kernels by variational approach in SVM
    • McKay B., and Slaney J. (Eds), Springer, Berlin
    • Gao J., Gunn S., and Kandola J. Adapting kernels by variational approach in SVM. In: McKay B., and Slaney J. (Eds). Lecture notes on artificial intelligence Vol. 2557 (2002), Springer, Berlin 395-406
    • (2002) Lecture notes on artificial intelligence , vol.2557 , pp. 395-406
    • Gao, J.1    Gunn, S.2    Kandola, J.3
  • 16
    • 0035461049 scopus 로고    scopus 로고
    • On a class of support vector kernels based on frames in function hilbert spaces
    • Gao J., Harris C., and Gunn S. On a class of support vector kernels based on frames in function hilbert spaces. Neural Computation 13 9 (2001) 1975-1994
    • (2001) Neural Computation , vol.13 , Issue.9 , pp. 1975-1994
    • Gao, J.1    Harris, C.2    Gunn, S.3
  • 17
    • 34548455315 scopus 로고    scopus 로고
    • Critical vector learning to construct sparse kernel regression modelling
    • Gao J., Shi D., and Liu X. Critical vector learning to construct sparse kernel regression modelling. Neural Networks 20 7 (2007) 791-798
    • (2007) Neural Networks , vol.20 , Issue.7 , pp. 791-798
    • Gao, J.1    Shi, D.2    Liu, X.3
  • 18
    • 38349060081 scopus 로고    scopus 로고
    • Mixture of the robust L1 distributions and its applications
    • Gao J., and Xu R. Mixture of the robust L1 distributions and its applications. Lecture notes in artificial intelligence Vol. 4830 (2007) 26-35
    • (2007) Lecture notes in artificial intelligence , vol.4830 , pp. 26-35
    • Gao, J.1    Xu, R.2
  • 19
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference, and prediction
    • Springer, Berlin
    • Hastie T., Tibshirani R., and Friedman J. The elements of statistical learning: Data mining, inference, and prediction. Springer series in statistics (2001), Springer, Berlin
    • (2001) Springer series in statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 20
    • 0347296051 scopus 로고    scopus 로고
    • Application of the kernel method to the inverse geosounding problem
    • Hidalgo H., Sosa S., and Gómez-Trevino E. Application of the kernel method to the inverse geosounding problem. Neural Networks 16 (2003) 349-353
    • (2003) Neural Networks , vol.16 , pp. 349-353
    • Hidalgo, H.1    Sosa, S.2    Gómez-Trevino, E.3
  • 21
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D. Bayesian interpolation. Neural Computation 4 3 (1992) 415-447
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.1
  • 26
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, incremental feature selection by gradient descent in function space
    • Perkins S., Lacker K., and Theiler J. Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research 3 (2003) 1333-1356
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 27
    • 0008197560 scopus 로고    scopus 로고
    • On the noise model of support vector machine regression
    • AI Laboratory, MIT
    • Pontil M., Mukherjee S., and Girosi F. On the noise model of support vector machine regression. A.I. Memo Vol. 1651 (1998), AI Laboratory, MIT
    • (1998) A.I. Memo , vol.1651
    • Pontil, M.1    Mukherjee, S.2    Girosi, F.3
  • 29
    • 38049108135 scopus 로고    scopus 로고
    • Fast optimization methods for L1 regularization: A comparative study and two new approaches
    • Schmidt M., Fung F., and Rosales R. Fast optimization methods for L1 regularization: A comparative study and two new approaches. Lecture Notes in Computer Science 4701 (2007) 286-297
    • (2007) Lecture Notes in Computer Science , vol.4701 , pp. 286-297
    • Schmidt, M.1    Fung, F.2    Rosales, R.3
  • 33
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.