-
1
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc. B 58, 267-288 (1996)
-
(1996)
J. Royal. Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
3
-
-
39449126969
-
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
-
Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1(4), 586-597 (2007)
-
(2007)
IEEE Journal of Selected Topics in Signal Processing
, vol.1
, Issue.4
, pp. 586-597
-
-
Figueiredo, M.1
Nowak, R.2
Wright, S.3
-
4
-
-
58349104057
-
Least angle and Ll regression: A Review
-
Hesterberg, T., Choi, N., Meier, L., Fraley, C.: Least angle and Ll regression: A Review. Statistics Surveys 2, 61-93 (2008)
-
(2008)
Statistics Surveys
, vol.2
, pp. 61-93
-
-
Hesterberg, T.1
Choi, N.2
Meier, L.3
Fraley, C.4
-
5
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Annals of Statistics 32, 407-451 (2004)
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-451
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
8
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
Chen, S.: Local regularization assisted orthogonal least squares regression. Neuro-Computing 69, 559-585 (2006)
-
(2006)
Neuro-Computing
, vol.69
, pp. 559-585
-
-
Chen, S.1
-
9
-
-
0031632516
-
Support vector machines for system identification
-
Swansea, U.K, pp
-
Drezet, P., Harrison, R.: Support vector machines for system identification. In: Proceeding of UKACC Int. Conf. Control 1998, Swansea, U.K., pp. 688-692 (1998)
-
(1998)
Proceeding of UKACC Int. Conf. Control
, pp. 688-692
-
-
Drezet, P.1
Harrison, R.2
-
10
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M.: Sparse Bayesian learning and the relevance vector machine. J. Machine Learning Research 1, 211-244 (2001)
-
(2001)
J. Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.1
-
11
-
-
0024771664
-
Orthogonal least squares methods and their application to non-linear system identification
-
Chen, S., Billings, S., Luo, W.: Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control 50(5), 1873-1896 (1989)
-
(1989)
International Journal of Control
, vol.50
, Issue.5
, pp. 1873-1896
-
-
Chen, S.1
Billings, S.2
Luo, W.3
-
12
-
-
0036996331
-
Support-Vector-based least squares for learning non-linear dynamics
-
Las Vegas, USA, pp
-
Kruif, B., Vries, T.: Support-Vector-based least squares for learning non-linear dynamics. In: Proceedings of 41st IEEE Conference on Decision and Control, Las Vegas, USA, pp. 10-13 (2002)
-
(2002)
Proceedings of 41st IEEE Conference on Decision and Control
, pp. 10-13
-
-
Kruif, B.1
Vries, T.2
-
13
-
-
33847095751
-
Bayesian input selection for nonlinear regression with LS-SVMS
-
The Netherlands, pp
-
Gestel, T., Espinoza, M., Suykens, J., Brasseur, C., deMoor, B.: Bayesian input selection for nonlinear regression with LS-SVMS. In: Proceedings of 13th IFAC Symposium on System Identification, Totterdam, The Netherlands, pp. 27-29 (2003)
-
(2003)
Proceedings of 13th IFAC Symposium on System Identification, Totterdam
, pp. 27-29
-
-
Gestel, T.1
Espinoza, M.2
Suykens, J.3
Brasseur, C.4
deMoor, B.5
-
14
-
-
33847607686
-
A generalized LS-SVM
-
Principe, J, Gile, L, Morgan, N, Wilson, E, eds, Rotterdam, The Netherlands
-
Valyon, J., Horváth, G.: A generalized LS-SVM. In: Principe, J., Gile, L., Morgan, N., Wilson, E. (eds.) Proceedings of 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands (2003)
-
(2003)
Proceedings of 13th IFAC Symposium on System Identification
-
-
Valyon, J.1
Horváth, G.2
-
15
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens, J., van Gestel, T., DeBrabanter, J., DeMoor, B.: Least Square Support Vector Machines. World Scientific, Singapore (2002)
-
(2002)
Least Square Support Vector Machines
-
-
Suykens, J.1
van Gestel, T.2
DeBrabanter, J.3
DeMoor, B.4
-
16
-
-
58349110870
-
-
Pontil, M., Mukherjee, S., Girosi, F.: On the noise model of support vector machine regression. A.I. Memo 1651, AI Laboratory, MIT (1998)
-
Pontil, M., Mukherjee, S., Girosi, F.: On the noise model of support vector machine regression. A.I. Memo 1651, AI Laboratory, MIT (1998)
-
-
-
-
17
-
-
82155175029
-
Adapting kernels by variational approach in SVM
-
McKay, B, Slaney, J.K, eds, Canadian AI 2002, Springer, Heidelberg
-
Gao, J., Gunn, S., Kandola, J.: Adapting kernels by variational approach in SVM. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2557, pp. 395-406. Springer, Heidelberg (2002)
-
(2002)
LNCS (LNAI
, vol.2557
, pp. 395-406
-
-
Gao, J.1
Gunn, S.2
Kandola, J.3
-
18
-
-
38349060081
-
-
Gao, J., Xu, R.: Mixture of the robust L1 distributions and its applications. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), 4830, pp. 26-35. Springer, Heidelberg (2007)
-
Gao, J., Xu, R.: Mixture of the robust L1 distributions and its applications. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 26-35. Springer, Heidelberg (2007)
-
-
-
-
19
-
-
38349073064
-
Robust L1 principal component analysis and its Bayesian variational inference
-
Gao, J.: Robust L1 principal component analysis and its Bayesian variational inference. Neural Computation 20, 555-572 (2008)
-
(2008)
Neural Computation
, vol.20
, pp. 555-572
-
-
Gao, J.1
-
20
-
-
0001731811
-
The identification of linear and nonlinear models of a turbocharged automotive diesel engine
-
Billings, S., Chen, S., Backhouse, R.: The identification of linear and nonlinear models of a turbocharged automotive diesel engine. Mech. Syst. Signal Processing 3(2), 123-142 (1989)
-
(1989)
Mech. Syst. Signal Processing
, vol.3
, Issue.2
, pp. 123-142
-
-
Billings, S.1
Chen, S.2
Backhouse, R.3
|