메뉴 건너뛰기




Volumn 71, Issue 4-6, 2008, Pages 931-943

An orthogonal forward regression technique for sparse kernel density estimation

Author keywords

Cross validation; Multiplicative nonnegative quadratic programming; Orthogonal forward regression; Parzen window estimate; Probability density function; Regularisation; Sparse kernel modelling

Indexed keywords

MATHEMATICAL MODELS; OPTIMIZATION; PROBABILITY DENSITY FUNCTION; QUADRATIC PROGRAMMING;

EID: 38649088632     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.02.008     Document Type: Article
Times cited : (44)

References (25)
  • 1
    • 0016355478 scopus 로고    scopus 로고
    • H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control AC-19 (1974) 716-723.
    • H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control AC-19 (1974) 716-723.
  • 3
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 69 4-6 (2006) 559-585
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 559-585
    • Chen, S.1
  • 4
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S.A., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50 5 (1989) 1873-1896
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 5
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • Chen S., Hong X., and Harris C.J. Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans. Autom. Control 48 6 (2003) 1029-1036
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.6 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 6
    • 3442881906 scopus 로고    scopus 로고
    • Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    • Chen S., Hong X., and Harris C.J. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Trans. Syst. Man Cybern. Part B 34 4 (2004) 1708-1717
    • (2004) IEEE Trans. Syst. Man Cybern. Part B , vol.34 , Issue.4 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 7
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
    • Chen S., Hong X., Harris C.J., and Sharkey P.M. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. Part B 34 2 (2004) 898-911
    • (2004) IEEE Trans. Syst. Man Cybern. Part B , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 8
    • 3442875753 scopus 로고    scopus 로고
    • PhD Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton
    • Choudhury A. Fast Machine Learning Algorithms for Large Data (2002), PhD Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton
    • (2002) Fast Machine Learning Algorithms for Large Data
    • Choudhury, A.1
  • 9
    • 0142039770 scopus 로고    scopus 로고
    • Probability density estimation from optimally condensed data samples
    • Girolami M., and He C. Probability density estimation from optimally condensed data samples. IEEE Trans. Pattern Analy. Mach. Intell. 25 10 (2003) 1253-1264
    • (2003) IEEE Trans. Pattern Analy. Mach. Intell. , vol.25 , Issue.10 , pp. 1253-1264
    • Girolami, M.1    He, C.2
  • 10
    • 21344466221 scopus 로고    scopus 로고
    • Linear unlearning for cross-validation
    • Hansen L.K., and Larsen J. Linear unlearning for cross-validation. Adv. Comput. Math. 5 (1996) 269-280
    • (1996) Adv. Comput. Math. , vol.5 , pp. 269-280
    • Hansen, L.K.1    Larsen, J.2
  • 11
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • Hansen M.H., and Yu B. Model selection and the principle of minimum description length. J. Am. Statist. Assoc. 96 454 (2001) 746-774
    • (2001) J. Am. Statist. Assoc. , vol.96 , Issue.454 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 12
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic
    • Hong X., Sharkey P.M., and Warwick K. Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic. IEE Proc. Control Theory Appl. 150 3 (2003) 245-254
    • (2003) IEE Proc. Control Theory Appl. , vol.150 , Issue.3 , pp. 245-254
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 13
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Comput. 4 3 (1992) 415-447
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 15
    • 0013370796 scopus 로고    scopus 로고
    • Local overfitting control via leverages
    • Monari G., and Dreyfus G. Local overfitting control via leverages. Neural Comput. 14 (2002) 1481-1506
    • (2002) Neural Comput. , vol.14 , pp. 1481-1506
    • Monari, G.1    Dreyfus, G.2
  • 18
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1066-1076
    • (1962) Ann. Math. Statist. , vol.33 , pp. 1066-1076
    • Parzen, E.1
  • 22
    • 0000629975 scopus 로고
    • Cross validation choice and assessment of statistical predictions
    • Stone M. Cross validation choice and assessment of statistical predictions. J. R. Statist. Soc. Ser. B 36 (1974) 111-147
    • (1974) J. R. Statist. Soc. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 23
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 (2001) 211-244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 24
    • 84898937307 scopus 로고    scopus 로고
    • V. Vapnik and S. Mukherjee, Support vector method for multivariate density estimation, in: S. Solla, T. Leen, K.R. Müller (Eds.), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2000, pp. 659-665.
    • V. Vapnik and S. Mukherjee, Support vector method for multivariate density estimation, in: S. Solla, T. Leen, K.R. Müller (Eds.), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2000, pp. 659-665.
  • 25
    • 38649110989 scopus 로고    scopus 로고
    • J. Weston, A. Gammerman, M.O. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density estimation, in: B. Schölkopf, C. Burges, A.J. Smola (Eds), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge MA, 1999, pp. 293-306.
    • J. Weston, A. Gammerman, M.O. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density estimation, in: B. Schölkopf, C. Burges, A.J. Smola (Eds), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge MA, 1999, pp. 293-306.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.