-
1
-
-
0016355478
-
-
H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control AC-19 (1974) 716-723.
-
H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control AC-19 (1974) 716-723.
-
-
-
-
3
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 69 4-6 (2006) 559-585
-
(2006)
Neurocomputing
, vol.69
, Issue.4-6
, pp. 559-585
-
-
Chen, S.1
-
4
-
-
0024771664
-
Orthogonal least squares methods and their application to non-linear system identification
-
Chen S., Billings S.A., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50 5 (1989) 1873-1896
-
(1989)
Int. J. Control
, vol.50
, Issue.5
, pp. 1873-1896
-
-
Chen, S.1
Billings, S.A.2
Luo, W.3
-
5
-
-
0038548172
-
Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
-
Chen S., Hong X., and Harris C.J. Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans. Autom. Control 48 6 (2003) 1029-1036
-
(2003)
IEEE Trans. Autom. Control
, vol.48
, Issue.6
, pp. 1029-1036
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
6
-
-
3442881906
-
Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
-
Chen S., Hong X., and Harris C.J. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Trans. Syst. Man Cybern. Part B 34 4 (2004) 1708-1717
-
(2004)
IEEE Trans. Syst. Man Cybern. Part B
, vol.34
, Issue.4
, pp. 1708-1717
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
7
-
-
1842430977
-
Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
-
Chen S., Hong X., Harris C.J., and Sharkey P.M. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. Part B 34 2 (2004) 898-911
-
(2004)
IEEE Trans. Syst. Man Cybern. Part B
, vol.34
, Issue.2
, pp. 898-911
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
Sharkey, P.M.4
-
8
-
-
3442875753
-
-
PhD Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton
-
Choudhury A. Fast Machine Learning Algorithms for Large Data (2002), PhD Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton
-
(2002)
Fast Machine Learning Algorithms for Large Data
-
-
Choudhury, A.1
-
9
-
-
0142039770
-
Probability density estimation from optimally condensed data samples
-
Girolami M., and He C. Probability density estimation from optimally condensed data samples. IEEE Trans. Pattern Analy. Mach. Intell. 25 10 (2003) 1253-1264
-
(2003)
IEEE Trans. Pattern Analy. Mach. Intell.
, vol.25
, Issue.10
, pp. 1253-1264
-
-
Girolami, M.1
He, C.2
-
10
-
-
21344466221
-
Linear unlearning for cross-validation
-
Hansen L.K., and Larsen J. Linear unlearning for cross-validation. Adv. Comput. Math. 5 (1996) 269-280
-
(1996)
Adv. Comput. Math.
, vol.5
, pp. 269-280
-
-
Hansen, L.K.1
Larsen, J.2
-
11
-
-
0141879236
-
Model selection and the principle of minimum description length
-
Hansen M.H., and Yu B. Model selection and the principle of minimum description length. J. Am. Statist. Assoc. 96 454 (2001) 746-774
-
(2001)
J. Am. Statist. Assoc.
, vol.96
, Issue.454
, pp. 746-774
-
-
Hansen, M.H.1
Yu, B.2
-
12
-
-
0037861058
-
Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic
-
Hong X., Sharkey P.M., and Warwick K. Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic. IEE Proc. Control Theory Appl. 150 3 (2003) 245-254
-
(2003)
IEE Proc. Control Theory Appl.
, vol.150
, Issue.3
, pp. 245-254
-
-
Hong, X.1
Sharkey, P.M.2
Warwick, K.3
-
13
-
-
0001025418
-
Bayesian interpolation
-
MacKay D.J.C. Bayesian interpolation. Neural Comput. 4 3 (1992) 415-447
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
15
-
-
0013370796
-
Local overfitting control via leverages
-
Monari G., and Dreyfus G. Local overfitting control via leverages. Neural Comput. 14 (2002) 1481-1506
-
(2002)
Neural Comput.
, vol.14
, pp. 1481-1506
-
-
Monari, G.1
Dreyfus, G.2
-
18
-
-
0001473437
-
On estimation of a probability density function and mode
-
Parzen E. On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1066-1076
-
(1962)
Ann. Math. Statist.
, vol.33
, pp. 1066-1076
-
-
Parzen, E.1
-
20
-
-
0142130763
-
-
Technical Report, MS-CIS-02-19, University of Pennsylvania, USA
-
Sha F., Saul L.K., and Lee D.D. Multiplicative updates for nonnegative quadratic programming in support vector machines (2002), Technical Report, MS-CIS-02-19, University of Pennsylvania, USA
-
(2002)
Multiplicative updates for nonnegative quadratic programming in support vector machines
-
-
Sha, F.1
Saul, L.K.2
Lee, D.D.3
-
22
-
-
0000629975
-
Cross validation choice and assessment of statistical predictions
-
Stone M. Cross validation choice and assessment of statistical predictions. J. R. Statist. Soc. Ser. B 36 (1974) 111-147
-
(1974)
J. R. Statist. Soc. Ser. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
23
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 (2001) 211-244
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
24
-
-
84898937307
-
-
V. Vapnik and S. Mukherjee, Support vector method for multivariate density estimation, in: S. Solla, T. Leen, K.R. Müller (Eds.), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2000, pp. 659-665.
-
V. Vapnik and S. Mukherjee, Support vector method for multivariate density estimation, in: S. Solla, T. Leen, K.R. Müller (Eds.), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2000, pp. 659-665.
-
-
-
-
25
-
-
38649110989
-
-
J. Weston, A. Gammerman, M.O. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density estimation, in: B. Schölkopf, C. Burges, A.J. Smola (Eds), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge MA, 1999, pp. 293-306.
-
J. Weston, A. Gammerman, M.O. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density estimation, in: B. Schölkopf, C. Burges, A.J. Smola (Eds), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge MA, 1999, pp. 293-306.
-
-
-
|