-
2
-
-
0003798631
-
-
A.I. Memo 1654, AI Lab, MIT, Massachusetts
-
T. Evgeniou, M. Pontil, and T. Poggio. A unified framework for regularization networks and support vector machines. A.I. Memo 1654, AI Lab, MIT, Massachusetts, 1999.
-
(1999)
A Unified Framework for Regularization Networks and Support Vector Machines
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
3
-
-
0002432565
-
Multivariable adaptive regression splines
-
J.H. Friedman. Multivariable adaptive regression splines. The Annals of Statistics, 19(1):1-57, 1991.
-
(1991)
The Annals of Statistics
, vol.19
, Issue.1
, pp. 1-57
-
-
Friedman, J.H.1
-
4
-
-
0036161010
-
A probabilistic framework for SVM regression and error bar estimation
-
J.B. Gao, S.R. Gunn, C.J. Harris, and M.Q. Brown. A probabilistic framework for SVM regression and error bar estimation. Machine Learning, 46:71-89, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 71-89
-
-
Gao, J.B.1
Gunn, S.R.2
Harris, C.J.3
Brown, M.Q.4
-
5
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219-269, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
11
-
-
0004220749
-
Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
-
University of Toronto
-
R. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Technical Report CRG-TR-97-2, Dept. of Computer Science, University of Toronto, 1997.
-
(1997)
Technical Report CRG-TR-97-2, Dept. of Computer Science
-
-
Neal, R.1
-
13
-
-
0008197560
-
-
A.I. Memo 1651, AI Laboratory, MIT
-
M. Pontil, S. Mukherjee, and F. Girosi. On the noise model of support vector machine regression. A.I. Memo 1651, AI Laboratory, MIT, 1998.
-
(1998)
On the Noise Model of Support Vector Machine Regression
-
-
Pontil, M.1
Mukherjee, S.2
Girosi, F.3
-
14
-
-
0742267200
-
-
Research report, Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, Scotland
-
M. Seeger. Relationships between Gaussian processes, support vector machines and smoothing splines. Research report, Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, Scotland, 2000.
-
(2000)
Relationships between Gaussian Processes, Support Vector Machines and Smoothing Splines
-
-
Seeger, M.1
-
15
-
-
0004094721
-
-
PhD thesis, Technischen Universität Berlin, Berlin, Germany
-
A.J. Smola. Learning with Kernels. PhD thesis, Technischen Universität Berlin, Berlin, Germany, 1998.
-
(1998)
Learning with Kernels
-
-
Smola, A.J.1
-
16
-
-
0033355869
-
Approximate learning curves for Gaussian processes
-
London, The Institution of Electrical Engineers
-
P. Sollich. Approximate learning curves for Gaussian processes. In ICANN99: Ninth International Conference on Artificial Neural Networks, pages 437-442, London, 1999. The Institution of Electrical Engineers.
-
(1999)
ICANN99: Ninth International Conference on Artificial Neural Networks
, pp. 437-442
-
-
Sollich, P.1
-
19
-
-
0003466536
-
-
volume 59 of Series in Applied Mathematics. SIAM Press, Philadelphia
-
G. Wahba. Splines Models for Observational Data, volume 59 of Series in Applied Mathematics. SIAM Press, Philadelphia, 1990.
-
(1990)
Splines Models for Observational Data
-
-
Wahba, G.1
-
20
-
-
84898974226
-
Computing with infinite networks
-
M.C. Mozer, M.I. Jordan, and T. Petsche, editors, MIT Press
-
C.K. Williams. Computing with infinite networks. In M.C. Mozer, M.I. Jordan, and T. Petsche, editors, Neural Information Processing Systems, volume 9, pages 295-301. MIT Press, 1997.
-
(1997)
Neural Information Processing Systems
, vol.9
, pp. 295-301
-
-
Williams, C.K.1
-
21
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M.I. Jordan, editor, MIT Press, Cambridge, Massachusetts
-
C.K. Williams. Prediction with gaussian processes: from linear regression to linear prediction and beyond. In M.I. Jordan, editor, Learning in Graphical Models, pages 599-621. MIT Press, Cambridge, Massachusetts, 1998.
-
(1998)
Learning in Graphical Models
, pp. 599-621
-
-
Williams, C.K.1
-
23
-
-
0002295913
-
Gaussian processes for regression
-
D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, MIT Press
-
C.K. Williams and C.E. Rasmuseen. Gaussian processes for regression. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Neural Information Processing Systems, volume 8, pages 514-520. MIT Press, 1997.
-
(1997)
Neural Information Processing Systems
, vol.8
, pp. 514-520
-
-
Williams, C.K.1
Rasmuseen, C.E.2
|