-
1
-
-
38349073064
-
Robust L1 principal component analysis and its bayesian variational inference
-
to appear
-
Gao, J.: Robust L1 principal component analysis and its bayesian variational inference. Neural Computation (to appear, 2008)
-
(2008)
Neural Computation
-
-
Gao, J.1
-
3
-
-
0002629270
-
Maximum-likelihood from incomplete data via the EM algorithm
-
Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from incomplete data via the EM algorithm. J. Royal Statistical Soceity, Ser. B 39, 1-38 (1977)
-
(1977)
J. Royal Statistical Soceity, Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
4
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Computation 11, 443-482 (1999)
-
(1999)
Neural Computation
, vol.11
, pp. 443-482
-
-
Tipping, M.1
Bishop, C.2
-
5
-
-
33748149588
-
Learning nonlinear image manifolds by global alignment of local linear models
-
Verbeek, J.: Learning nonlinear image manifolds by global alignment of local linear models. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(8), 1236-1250 (2006)
-
(2006)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.8
, pp. 1236-1250
-
-
Verbeek, J.1
-
6
-
-
33749626257
-
A Laplace mixture model for identification of differential expression in microarray experiments
-
Bhowmick, D., Davison, A., Goldstein, D., Ruffieux, Y.: A Laplace mixture model for identification of differential expression in microarray experiments. Biostatistics 7, 630-641 (2006)
-
(2006)
Biostatistics
, vol.7
, pp. 630-641
-
-
Bhowmick, D.1
Davison, A.2
Goldstein, D.3
Ruffieux, Y.4
-
8
-
-
0041407143
-
Robust mixture modelling using the t distribution
-
Peel, D., McLachlan, G.: Robust mixture modelling using the t distribution. Statistic and Computing 10, 339-348 (2000)
-
(2000)
Statistic and Computing
, vol.10
, pp. 339-348
-
-
Peel, D.1
McLachlan, G.2
-
9
-
-
33947166537
-
Robust subspace mixture models using t-distributions
-
Harvey, R, Bangham, A, eds
-
Ridder, D.D., Franc, V.: Robust subspace mixture models using t-distributions. In: Harvey, R., Bangham, A. (eds.) BMVC 2003. Proceedings of the 14th British Machine Vision Conference, pp. 319-328 (2003)
-
(2003)
BMVC 2003. Proceedings of the 14th British Machine Vision Conference
, pp. 319-328
-
-
Ridder, D.D.1
Franc, V.2
-
11
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B. 58, 267-288 (1996)
-
(1996)
J. Royal. Statist. Soc B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
12
-
-
14344249889
-
Feature selection, L1 vs. L2 regularization, and rotational invariance
-
Ng, A.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of Intl Conf. Machine Learning (2004)
-
(2004)
Proceedings of Intl Conf. Machine Learning
-
-
Ng, A.1
-
14
-
-
33745118249
-
Sparse principal component analysis
-
Technical report, Statistics Department, Stanford University
-
Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Technical report, Statistics Department, Stanford University (2004)
-
(2004)
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
33645816664
-
Modeling nonlinear dependencies in natural images using mixture of laplacian distribution
-
Saul, L.K, Weiss, Y, Bottou, L, eds, MIT Press, Cambridge
-
Park, H.J., Lee, T.W.: Modeling nonlinear dependencies in natural images using mixture of laplacian distribution. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1041-1048. MIT Press, Cambridge (2005)
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1041-1048
-
-
Park, H.J.1
Lee, T.W.2
-
16
-
-
82155175029
-
-
Gao, J., Gunn, S., Kandola, J.: Adapting kernels by variational approach in svm. In: McKay, B., Slaney, J.K. (eds.) AI 2002. LNCS (LNAI), 2557, pp. 395-406. Springer, Heidelberg (2002)
-
Gao, J., Gunn, S., Kandola, J.: Adapting kernels by variational approach in svm. In: McKay, B., Slaney, J.K. (eds.) AI 2002. LNCS (LNAI), vol. 2557, pp. 395-406. Springer, Heidelberg (2002)
-
-
-
-
17
-
-
27844592624
-
Variational inference for Student-t models: Robust Bayesian interpolation and generalized component analysis
-
Tipping, M., Lawrence, N.: Variational inference for Student-t models: Robust Bayesian interpolation and generalized component analysis. NeuroComputing 69, 123-141 (2005)
-
(2005)
NeuroComputing
, vol.69
, pp. 123-141
-
-
Tipping, M.1
Lawrence, N.2
-
18
-
-
38349080406
-
-
Pontil, M., Mukherjee, S., Girosi, F.: On the noise model of support vector machine regression. In: A.I. Memo 1651, AI Laboratory, MIT, Cambridge (1998)
-
Pontil, M., Mukherjee, S., Girosi, F.: On the noise model of support vector machine regression. In: A.I. Memo 1651, AI Laboratory, MIT, Cambridge (1998)
-
-
-
-
19
-
-
38349038882
-
-
Guo, Y., Gao, J.B., Kwan, P.W.: Kernel Laplacian eigenmaps for visualization of non-vectorial data. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), 4304, pp. 1179-1183. Springer, Heidelberg (2006)
-
Guo, Y., Gao, J.B., Kwan, P.W.: Kernel Laplacian eigenmaps for visualization of non-vectorial data. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1179-1183. Springer, Heidelberg (2006)
-
-
-
-
20
-
-
35348894769
-
Visualization of non-vectorial data using twin kernel embedding
-
Ong, K, Smith-Miles, K, Lee, V, Ng, W, eds, IEEE Computer Society Press, Los Alamitos
-
Guo, Y., Gao, J.B., Kwan, P.W.: Visualization of non-vectorial data using twin kernel embedding. In: Ong, K., Smith-Miles, K., Lee, V., Ng, W. (eds.) AIDM 2006. Proceedings of the International Workshop on Integrating AI and Data Mining, pp. 11-17. IEEE Computer Society Press, Los Alamitos (2006)
-
(2006)
AIDM 2006. Proceedings of the International Workshop on Integrating AI and Data Mining
, pp. 11-17
-
-
Guo, Y.1
Gao, J.B.2
Kwan, P.W.3
|