메뉴 건너뛰기




Volumn 24, Issue 1, 2010, Pages 5-9

Leaping forks at inverted repeats

Author keywords

Breakage fusion bridge cycle; Genome instability; Inverted repeat; Recombination; Template switch

Indexed keywords

CELL CYCLE S PHASE; CHROMOSOME REARRANGEMENT; DICENTRIC CHROMOSOME; DNA REPLICATION; DNA SEQUENCE; DNA STRUCTURE; DOUBLE STRANDED DNA BREAK; GENETIC RECOMBINATION; GENOMIC INSTABILITY; INVERTED REPEAT; NONHUMAN; PRIORITY JOURNAL; REVIEW; SIGNAL TRANSDUCTION;

EID: 73549117458     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.1884810     Document Type: Review
Times cited : (10)

References (46)
  • 1
    • 30944462801 scopus 로고    scopus 로고
    • Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast
    • Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, Hunt E, Weinert T. 2006. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes & Dev 20: 159-173.
    • (2006) Genes & Dev , vol.20 , pp. 159-173
    • Admire, A.1    Shanks, L.2    Danzl, N.3    Wang, M.4    Weier, U.5    Stevens, W.6    Hunt, E.7    Weinert, T.8
  • 2
    • 0032570023 scopus 로고    scopus 로고
    • Observations on template switching during DNA replication through long inverted repeats
    • Ahmed A, Podemski L. 1998. Observations on template switching during DNA replication through long inverted repeats. Gene 223: 187-194.
    • (1998) Gene , vol.223 , pp. 187-194
    • Ahmed, A.1    Podemski, L.2
  • 5
    • 67649862225 scopus 로고    scopus 로고
    • Replication fork reversal and the maintenance of genome stability
    • Atkinson J, McGlynn P. 2009. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 37: 3475-3492.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3475-3492
    • Atkinson, J.1    McGlynn, P.2
  • 6
    • 0036250811 scopus 로고    scopus 로고
    • Alu repeats and human genomic diversity
    • Batzer MA, Deininger PL. 2002. Alu repeats and human genomic diversity. Nat Rev Genet 3: 370-379.
    • (2002) Nat Rev Genet , vol.3 , pp. 370-379
    • Batzer, M.A.1    Deininger, P.L.2
  • 7
    • 0030069685 scopus 로고    scopus 로고
    • DNA rearrangement mediated by inverted repeats
    • Bi X, Liu LF. 1996. DNA rearrangement mediated by inverted repeats. Proc Natl Acad Sci 93: 819-823.
    • (1996) Proc Natl Acad Sci , vol.93 , pp. 819-823
    • Bi, X.1    Liu, L.F.2
  • 8
    • 37349111022 scopus 로고    scopus 로고
    • Template switching: From replication fork repair to genome rearrangements
    • Branzei D, Foiani M. 2007. Template switching: From replication fork repair to genome rearrangements. Cell 131: 1228-1230.
    • (2007) Cell , vol.131 , pp. 1228-1230
    • Branzei, D.1    Foiani, M.2
  • 9
    • 68249122027 scopus 로고    scopus 로고
    • The checkpoint response to replication stress
    • Branzei D, Foiani M. 2009. The checkpoint response to replication stress. DNA Repair (Amst) 8: 1038-1046.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1038-1046
    • Branzei, D.1    Foiani, M.2
  • 10
    • 57749169348 scopus 로고    scopus 로고
    • SUMOylation regulates Rad18-mediated template switch
    • Branzei D, Vanoli F, Foiani M. 2008. SUMOylation regulates Rad18-mediated template switch. Nature 456: 915-920.
    • (2008) Nature , vol.456 , pp. 915-920
    • Branzei, D.1    Vanoli, F.2    Foiani, M.3
  • 11
    • 0037178723 scopus 로고    scopus 로고
    • ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha RS, Kleckner N. 2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297: 602-606.
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 12
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen C, Kolodner RD. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23: 81-85.
    • (1999) Nat Genet , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 13
    • 0037925515 scopus 로고    scopus 로고
    • Complex mechanism of site-specific DNA replication termination in fission yeast
    • Codlin S, Dalgaard JZ. 2003. Complex mechanism of site-specific DNA replication termination in fission yeast. EMBO J 22: 3431-3440.
    • (2003) EMBO J , vol.22 , pp. 3431-3440
    • Codlin, S.1    Dalgaard, J.Z.2
  • 14
    • 0035882059 scopus 로고    scopus 로고
    • A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe
    • Dalgaard JZ, Klar AJ. 2001. A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes & Dev 15: 2060-2068.
    • (2001) Genes & Dev , vol.15 , pp. 2060-2068
    • Dalgaard, J.Z.1    Klar, A.J.2
  • 15
    • 0032565510 scopus 로고    scopus 로고
    • Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability
    • Gordenin DA, Resnick MA. 1998. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400: 45-58.
    • (1998) Mutat Res , vol.400 , pp. 45-58
    • Gordenin, D.A.1    Resnick, M.A.2
  • 17
  • 18
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner RD, Putnam CD, Myung K. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552-557.
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 20
    • 20444424939 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
    • Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. 2005. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121: 689-702.
    • (2005) Cell , vol.121 , pp. 689-702
    • Lambert, S.1    Watson, A.2    Sheedy, D.M.3    Martin, B.4    Carr, A.M.5
  • 21
    • 0021038037 scopus 로고
    • Viability of l phages carrying a perfect palindrome in the absence of recombination nucleases
    • Leach DR, Stahl FW. 1983. Viability of l phages carrying a perfect palindrome in the absence of recombination nucleases. Nature 305: 448-451.
    • (1983) Nature , vol.305 , pp. 448-451
    • Leach, D.R.1    Stahl, F.W.2
  • 22
    • 37349109667 scopus 로고    scopus 로고
    • A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
    • Lee JA, Carvalho CMB, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131: 1235-1247.
    • (2007) Cell , vol.131 , pp. 1235-1247
    • Lee, J.A.1    Carvalho, C.M.B.2    Lupski, J.R.3
  • 23
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites
    • Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD. 2005. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120: 587-598.
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.J.1    Degtyareva, N.P.2    Lobachev, K.3    Petes, T.D.4
  • 24
    • 0036278984 scopus 로고    scopus 로고
    • The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1)
    • Lengronne A, Schwob E. 2002. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 9: 1067-1078.
    • (2002) Mol Cell , vol.9 , pp. 1067-1078
    • Lengronne, A.1    Schwob, E.2
  • 26
    • 0037169325 scopus 로고    scopus 로고
    • The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
    • Lobachev KS, Gordenin DA, Resnick MA. 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183-193.
    • (2002) Cell , vol.108 , pp. 183-193
    • Lobachev, K.S.1    Gordenin, D.A.2    Resnick, M.A.3
  • 27
    • 34347238951 scopus 로고    scopus 로고
    • Hairpin- and cruciform-mediated chromosome breakage: Causes and consequences in eukaryotic cells
    • Lobachev KS, Rattray A, Narayanan V. 2007. Hairpin- and cruciform-mediated chromosome breakage: Causes and consequences in eukaryotic cells. Front Biosci 12: 4208-4220.
    • (2007) Front Biosci , vol.12 , pp. 4208-4220
    • Lobachev, K.S.1    Rattray, A.2    Narayanan, V.3
  • 29
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern MJ, Haber JE. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111-135.
    • (2006) Annu Rev Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 30
    • 72849150228 scopus 로고    scopus 로고
    • Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism
    • Mizuno KI, Lambert S, Baldacci G, Murray JM, Carr AM. 2009. Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes & Dev 23: 2876-2886.
    • (2009) Genes & Dev , vol.23 , pp. 2876-2886
    • Mizuno, K.I.1    Lambert, S.2    Baldacci, G.3    Murray, J.M.4    Carr, A.M.5
  • 31
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K, Datta A, Kolodner RD. 2001. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104: 397-408.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 32
    • 33745264366 scopus 로고    scopus 로고
    • The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks
    • Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS. 2006. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125: 1283-1296.
    • (2006) Cell , vol.125 , pp. 1283-1296
    • Narayanan, V.1    Mieczkowski, P.A.2    Kim, H.M.3    Petes, T.D.4    Lobachev, K.S.5
  • 34
    • 72849116104 scopus 로고    scopus 로고
    • Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast
    • Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, Weinert T. 2009. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes & Dev 23: 2861-2875.
    • (2009) Genes & Dev , vol.23 , pp. 2861-2875
    • Paek, A.L.1    Kaochar, S.2    Jones, H.3    Elezaby, A.4    Shanks, L.5    Weinert, T.6
  • 35
    • 52949143512 scopus 로고    scopus 로고
    • Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175. doi: 10.1371/journal.pgen.1000175.
    • Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175. doi: 10.1371/journal.pgen.1000175.
  • 37
    • 34247611513 scopus 로고    scopus 로고
    • Template switching during break-induced replication
    • Smith CE, Llorente B, Symington LS. 2007. Template switching during break-induced replication. Nature 447: 102-105.
    • (2007) Nature , vol.447 , pp. 102-105
    • Smith, C.E.1    Llorente, B.2    Symington, L.S.3
  • 38
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to check-point defects
    • Sogo JM, Lopes M, Foiani M. 2002. Fork reversal and ssDNA accumulation at stalled replication forks owing to check-point defects. Science 297: 599-602.
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 39
    • 0036591666 scopus 로고    scopus 로고
    • Molecular-evolutionary mechanisms for genomic disorders
    • Stankiewicz P, Lupski JR. 2002. Molecular-evolutionary mechanisms for genomic disorders. Curr Opin Genet Dev 12: 312-319.
    • (2002) Curr Opin Genet Dev , vol.12 , pp. 312-319
    • Stankiewicz, P.1    Lupski, J.R.2
  • 40
    • 0035147092 scopus 로고    scopus 로고
    • Biased distribution of inverted and direct Alus in the human genome: Implications for insertion, exclusion, and genome stability
    • Stenger JE, Lobachev KS, Gordenin D, Darden TA, Jurka J, Resnick MA. 2001. Biased distribution of inverted and direct Alus in the human genome: Implications for insertion, exclusion, and genome stability. Genome Res 11: 12-27.
    • (2001) Genome Res , vol.11 , pp. 12-27
    • Stenger, J.E.1    Lobachev, K.S.2    Gordenin, D.3    Darden, T.A.4    Jurka, J.5    Resnick, M.A.6
  • 41
    • 60749110613 scopus 로고    scopus 로고
    • Palindromic gene amplification-an evolutionarily conserved role for DNA inverted repeats in the genome
    • Tanaka H, Yao MC. 2009. Palindromic gene amplification-an evolutionarily conserved role for DNA inverted repeats in the genome. Nat Rev Cancer 9: 216-224.
    • (2009) Nat Rev Cancer , vol.9 , pp. 216-224
    • Tanaka, H.1    Yao, M.C.2
  • 42
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423: 309-312.
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 43
    • 48249141027 scopus 로고    scopus 로고
    • Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins
    • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. 2008. Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci 105: 9936-9941.
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 9936-9941
    • Voineagu, I.1    Narayanan, V.2    Lobachev, K.S.3    Mirkin, S.M.4
  • 44
    • 59649105477 scopus 로고    scopus 로고
    • Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility
    • Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin SM. 2009. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat Struct Mol Biol 16: 226-228.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 226-228
    • Voineagu, I.1    Surka, C.F.2    Shishkin, A.A.3    Krasilnikova, M.M.4    Mirkin, S.M.5
  • 45
    • 6344289639 scopus 로고    scopus 로고
    • Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes
    • Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G. 2004. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res 14: 1861-1869.
    • (2004) Genome Res , vol.14 , pp. 1861-1869
    • Warburton, P.E.1    Giordano, J.2    Cheung, F.3    Gelfand, Y.4    Benson, G.5
  • 46


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.