메뉴 건너뛰기




Volumn 48, Issue 46, 2009, Pages 11011-11025

The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL-COA; ACTIVE SITE; C-C BOND FORMATION; CARBONYL CARBON; CATALYTIC BASE; CATALYTIC CAVITIES; CATALYTIC CYCLES; CATALYTIC MECHANISMS; CATALYTIC TRIAD; DUAL ROLE; ENOLATE INTERMEDIATES; ENOLATES; HYDROGEN BOND DONORS; HYDROGEN BONDING INTERACTIONS; MAIN CHAINS; NH GROUPS; OPTIMAL SETS; OXYANION HOLE; RATE-LIMITING STEPS; REACTION MECHANISM; STRUCTURAL CHANGE; TETRAHEDRAL INTERMEDIATES; TRANSITION STATE; TRANSITION STATE STABILIZATION; WATER MOLECULE;

EID: 72749112569     PISSN: 00062960     EISSN: None     Source Type: Journal    
DOI: 10.1021/bi901069h     Document Type: Article
Times cited : (53)

References (57)
  • 2
    • 0036775842 scopus 로고    scopus 로고
    • The Claisen condensation in biology
    • Heath, R. J., and Rock, C. O. (2002) The Claisen condensation in biology. Nat. Prod. Rep. 19, 581-596.
    • (2002) Nat. Prod. Rep. , vol.19 , pp. 581-596
    • Heath, R.J.1    Rock, C.O.2
  • 3
    • 0037319699 scopus 로고    scopus 로고
    • The chalcone synthase superfamily of type III polyketide synthases
    • Austin, M. B., and Noel, J. P. (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79-110.
    • (2003) Nat. Prod. Rep. , vol.20 , pp. 79-110
    • Austin, M.B.1    Noel, J.P.2
  • 4
    • 56549128655 scopus 로고    scopus 로고
    • Divergent evolution of the thiolase superfamily and chalcone synthase family
    • Jiang, C., Kim, S. Y., and Suh, D.-Y. (2008) Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol. Phylogen. Evol. 49, 691-701.
    • (2008) Mol. Phylogen. Evol. , vol.49 , pp. 691-701
    • Jiang, C.1    Kim, S.Y.2    Suh, D.-Y.3
  • 5
    • 23944508511 scopus 로고    scopus 로고
    • Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins
    • Peretó, J., López-Garcia, P., and Moreira, D. (2005) Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. J. Mol. Evol. 61, 65-74.
    • (2005) J. Mol. Evol. , vol.61 , pp. 65-74
    • Peretó, J.1    López-Garcia, P.2    Moreira, D.3
  • 6
    • 0026746281 scopus 로고
    • Biosynthetic thiolase from Zoogloea ramigera. Mutagenesis of the putative active-site base Cys-378 to Ser-378 changes the partitioning of the acetyl S-enzyme intermediate
    • Williams, S. F., Palmer, M. A., Peoples, O. P., Walsh, C. T., Sinskey, A. J., and Masamune, S. (1992) Biosynthetic thiolase from Zoogloea ramigera. Mutagenesis of the putative active-site base Cys-378 to Ser-378 changes the partitioning of the acetyl S-enzyme intermediate. J. Biol. Chem. 267, 16041-16043.
    • (1992) J. Biol. Chem. , vol.267 , pp. 16041-16043
    • Williams, S.F.1    Palmer, M.A.2    Peoples, O.P.3    Walsh, C.T.4    Sinskey, A.J.5    Masamune, S.6
  • 7
    • 0037207126 scopus 로고    scopus 로고
    • The catalytic cycle of biosynthetic thiolase: A conformational journey of an acetyl group through four binding modes and two oxyanion holes
    • DOI 10.1021/bi0266232
    • Kursula, P., Ojala, J., Lambeir, A.-M., and Wierenga, R. K. (2002) The catalytic cycle of biosynthetic thiolase: A conformational journey of an acetyl group through four binding modes and two oxyanion holes. Biochemistry 41, 15543-15556. (Pubitemid 36062459)
    • (2002) Biochemistry , vol.41 , Issue.52 , pp. 15543-15556
    • Kursula, P.1    Ojala, J.2    Lambeir, A.-M.3    Wierenga, R.K.4
  • 8
    • 30944439111 scopus 로고    scopus 로고
    • The thiolase superfamily: Condensing enzymes with diverse reaction specificities
    • Haapalainen, A. M., Meriläinen, G., and Wierenga, R. K. (2006) The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem. Sci. 31, 64-71.
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 64-71
    • Haapalainen, A.M.1    Meriläinen, G.2    Wierenga, R.K.3
  • 9
    • 0000552875 scopus 로고
    • Isolation, identification, and metabolic role of the sudanophilic granules of Zoogloea ramigera
    • Crabtree, K., McCoy, E., Boyle, W. C., and Rohlich, G. A. (1965) Isolation, identification, and metabolic role of the sudanophilic granules of Zoogloea ramigera. Appl. Microbiol. 13, 218-226.
    • (1965) Appl. Microbiol. , vol.13 , pp. 218-226
    • Crabtree, K.1    McCoy, E.2    Boyle, W.C.3    Rohlich, G.A.4
  • 10
    • 0013867125 scopus 로고
    • Cyst formation and poly-β-hydroxybutyric acid accumulation in Azotobacter
    • Stevenson, L. H., and Socolofsky, M. D. (1966) Cyst formation and poly-β-hydroxybutyric acid accumulation in Azotobacter. J. Bacteriol. 91, 304-310.
    • (1966) J. Bacteriol. , vol.91 , pp. 304-310
    • Stevenson, L.H.1    Socolofsky, M.D.2
  • 11
    • 22244466130 scopus 로고    scopus 로고
    • The structural biology of type II fatty acid biosynthesis
    • White, S. W., Zheng, J., Zhang, Y. M., and Rock (2005) The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791-831.
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 791-831
    • White, S.W.1    Zheng, J.2    Zhang, Y.M.3    Rock4
  • 12
    • 0034646566 scopus 로고    scopus 로고
    • Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase
    • Modis, Y., and Wierenga, R. K. (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J. Mol. Biol. 297, 1171-1182.
    • (2000) J. Mol. Biol. , vol.297 , pp. 1171-1182
    • Modis, Y.1    Wierenga, R.K.2
  • 13
    • 0034656302 scopus 로고    scopus 로고
    • So do we understand how enzymes work?
    • Blow, D. (2000) So do we understand how enzymes work? Structure 8, R77-81.
    • (2000) Structure , vol.8
    • Blow, D.1
  • 15
    • 50649087289 scopus 로고    scopus 로고
    • Acetylcholinesterase: How is structure related to function?
    • Silman, I., and Sussman, J. L. (2008) Acetylcholinesterase: How is structure related to function? Chem. Biol. Interact. 175, 3-10.
    • (2008) Chem. Biol. Interact. , vol.175 , pp. 3-10
    • Silman, I.1    Sussman, J.L.2
  • 16
    • 0030041250 scopus 로고    scopus 로고
    • Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state
    • DOI 10.1021/bi9515578
    • Nicolas, A., Egmond, M., Verrips, C. T., de Vlieg, J., Longhi, S., Cambillau, C., and Martinez, C. (1996) Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistry 35, 398-410. (Pubitemid 26033912)
    • (1996) Biochemistry , vol.35 , Issue.2 , pp. 398-410
    • Nicolas, A.1    Egmond, M.2    Verrips, C.T.3    De Vlieg, J.4    Longhi, S.5    Cambillau, C.6    Martinez, C.7
  • 17
    • 0000453071 scopus 로고
    • Importance of hydrogen bond formation in stabilizing the transition state of subtilisin
    • Wells, J. A., Cunningham, B. C., Graycar, T. P., and Estell, D. A. (1986) Importance of hydrogen bond formation in stabilizing the transition state of subtilisin. Phil Trans. R. Soc., A 317, 415-1413
    • (1986) Phil Trans. R. Soc., a , vol.317 , pp. 415-1413
    • Wells, J.A.1    Cunningham, B.C.2    Graycar, T.P.3    Estell, D.A.4
  • 19
    • 0034794047 scopus 로고    scopus 로고
    • Creation of an enantioselective hydrolase by engineered substrate-assisted catalysis
    • Magnusson, A., Hult, K., and Holmquist, M. (2001) Creation of an enantioselective hydrolase by engineered substrate-assisted catalysis. J. Am. Chem. Soc. 123, 4354-4355.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 4354-4355
    • Magnusson, A.1    Hult, K.2    Holmquist, M.3
  • 20
    • 0021828928 scopus 로고
    • Hydrogen bonding and biological specificity analysed by protein engineering
    • DOI 10.1038/314235a0
    • Fersht, A. R., Shi, J. P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M. M., and Winter, G. (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314, 235-238. (Pubitemid 15076511)
    • (1985) Nature , vol.314 , Issue.6008 , pp. 235-238
    • Fersht, A.R.1    Shi, J.P.2    Knill-Jones, J.3
  • 23
    • 0029782417 scopus 로고    scopus 로고
    • Active site mutants of pig citrate synthase: Effects of mutations on the enzyme catalytic and structural properties
    • Evans, C. T., Kurz, L. C., Remington, S. J., and Srere, P. A. (1996) Active site mutants of pig citrate synthase: effects of mutations on the enzyme catalytic and structural properties. Biochemistry. 35, 10661-10672.
    • (1996) Biochemistry , vol.35 , pp. 10661-10672
    • Evans, C.T.1    Kurz, L.C.2    Remington, S.J.3    Srere, P.A.4
  • 24
    • 50249180217 scopus 로고    scopus 로고
    • Mechanisms and structures of crotonase superfamily enzymes; how nature controls enolate and oxyanion reactivity
    • Hamed, R. B., Batchelar, E. T., Clifton, I. J., and Schofield, C. J. (2008) Mechanisms and structures of crotonase superfamily enzymes; how nature controls enolate and oxyanion reactivity. Cell. Mol. Life Sci. 65, 2507-2527.
    • (2008) Cell. Mol. Life Sci. , vol.65 , pp. 2507-2527
    • Hamed, R.B.1    Batchelar, E.T.2    Clifton, I.J.3    Schofield, C.J.4
  • 25
    • 53849096731 scopus 로고    scopus 로고
    • Testing geometrical discrimination within an enzyme active site: Constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole
    • Sigala, P. A., Kraut, D. A., Caaveiro, J. M., Pybus, B., Ruben, E. A., Ringe, D., Petsko, G. A., and Herschlag, D. (2008) Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole. J. Am. Chem. Soc. 130, 13696-13708.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 13696-13708
    • Sigala, P.A.1    Kraut, D.A.2    Caaveiro, J.M.3    Pybus, B.4    Ruben, E.A.5    Ringe, D.6    Petsko, G.A.7    Herschlag, D.8
  • 26
    • 0033569705 scopus 로고    scopus 로고
    • A biosynthetic thiolase in complex with a reaction intermediate: The crystal structure provides new insights into the catalytic mechanism
    • DOI 10.1016/S0969-2126(00)80061-1
    • Modis, Y., and Wierenga, R. K. (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7, 1279-1290. (Pubitemid 29482989)
    • (1999) Structure , vol.7 , Issue.10 , pp. 1279-1290
    • Modis, Y.1    Wierenga, R.K.2
  • 27
    • 0034282901 scopus 로고    scopus 로고
    • Sequestration of the active by interdomain shifting: Crystallographic and spectroscopic evidence for distinct conformations of L-3-hydroxyacyl-CoA dehydrogenase
    • Barycki, J. J., O'Brien, L. K., Strauss, A. W., and Banaszak, L. J. (2000) Sequestration of the active by interdomain shifting: crystallographic and spectroscopic evidence for distinct conformations of L-3-hydroxyacyl-CoA dehydrogenase. J. Biol. Chem. 275, 27186-27196.
    • (2000) J. Biol. Chem. , vol.275 , pp. 27186-27196
    • Barycki, J.J.1    O'Brien, L.K.2    Strauss, A.W.3    Banaszak, L.J.4
  • 28
    • 0033522493 scopus 로고    scopus 로고
    • Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism
    • Barycki, J. J., O'Brien, L. K., Bratt, J. M., Zhang, R., Sanishvili, R., Strauss, A. W., and Banaszak, L. J. (1999) Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry 38, 5786-5798. (Pubitemid 129516596)
    • (1999) Biochemistry , vol.38 , Issue.18 , pp. 5786-5798
    • Barycki, J.J.1    O'Brien, L.K.2    Bratt, J.M.3    Zhang, R.4    Sanishvili, R.5    Strauss, A.W.6    Banaszak, L.J.7
  • 29
    • 0015606239 scopus 로고
    • The oxoacyl-CoA thiolases of animal tissues
    • Middleton, B. (1973) The oxoacyl-CoA thiolases of animal tissues. Biochem. J. 132, 717-730.
    • (1973) Biochem. J. , vol.132 , pp. 717-730
    • Middleton, B.1
  • 30
    • 34147103372 scopus 로고    scopus 로고
    • Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: The importance of potassium and chloride ions for its structure and function
    • DOI 10.1021/bi6026192
    • Haapalainen, A. M., Meriläinen, G., Pirilä, P. L., Kondo, N., Fukao, T., and Wierenga, R. K. (2007) Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: the importance of potassium and chloride ions for its structure and function. Biochemistry 46, 4305-4321. (Pubitemid 46559397)
    • (2007) Biochemistry , vol.46 , Issue.14 , pp. 4305-4321
    • Haapalainen, A.M.1    Merilainen, G.2    Pirila, P.L.3    Kondo, N.4    Fukao, T.5    Wierenga, R.K.6
  • 31
    • 0027879008 scopus 로고
    • Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
    • Kabsch, W. (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795-800.
    • (1993) J. Appl. Crystallogr. , vol.26 , pp. 795-800
    • Kabsch, W.1
  • 35
    • 0000560808 scopus 로고    scopus 로고
    • MOLREP: An automated program for molecular replacement
    • Vagin, A., and Teplyakov, A. (1997) MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022-1025.
    • (1997) J. Appl. Crystallogr. , vol.30 , pp. 1022-1025
    • Vagin, A.1    Teplyakov, A.2
  • 36
    • 0028103275 scopus 로고
    • The CCP4 suite: Programs for protein crystallography
    • Collaborative Computational Project, Number 4.
    • Collaborative Computational Project, Number 4. (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 50, 760-763.
    • (1994) Acta Crystallogr., Sect. D: Biol. Crystallogr. , vol.50 , pp. 760-763
  • 41
    • 0024967191 scopus 로고
    • Mechanistic studies on beta-ketoacyl thiolase from Zoogloea ramigera: Identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes
    • Thompson, S., Mayerl, F., Peoples, O. P., Masamune, S., Sinskey, A. J., and Walsh, C. T. (1989) Mechanistic studies on beta-ketoacyl thiolase from Zoogloea ramigera: identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes. Biochemistry 28, 5735-5742.
    • (1989) Biochemistry , vol.28 , pp. 5735-5742
    • Thompson, S.1    Mayerl, F.2    Peoples, O.P.3    Masamune, S.4    Sinskey, A.J.5    Walsh, C.T.6
  • 42
    • 56849128429 scopus 로고    scopus 로고
    • The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme
    • Meriläinen, G., Schmitz, W., Wierenga, R. K., and Kursula, P. (2008) The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme. FEBS J. 275, 6136-6148.
    • (2008) FEBS J , vol.275 , pp. 6136-6148
    • Meriläinen, G.1    Schmitz, W.2    Wierenga, R.K.3    Kursula, P.4
  • 43
    • 13444307044 scopus 로고    scopus 로고
    • Secondary structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
    • Krissinel, E., and Henrick, K. (2004) Secondary structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2256-2268.
    • (2004) Acta Crystallogr., Sect. D: Biol. Crystallogr. , vol.60 , pp. 2256-2268
    • Krissinel, E.1    Henrick, K.2
  • 44
    • 0001415046 scopus 로고
    • Poly-R-3-hydroxybutyrate (PHB) biosynthesis: Mechanistic studies on the biological Claisen condensation catalysed by β-ketoacyl thiolase
    • Masamune, S., Walsh, C. T., Sinskey, A. J., and Peoples, O. P. (1989) Poly-R-3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalysed by β-ketoacyl thiolase. Pure Appl. Chem. 61, 303-312.
    • (1989) Pure Appl. Chem. , vol.61 , pp. 303-312
    • Masamune, S.1    Walsh, C.T.2    Sinskey, A.J.3    Peoples, O.P.4
  • 45
    • 0032860508 scopus 로고    scopus 로고
    • Hydrogen bonding in enzymatic catalysis: Analysis of energetic contributions
    • Shan, S. O., and Herschlag, D. (1999) Hydrogen bonding in enzymatic catalysis: analysis of energetic contributions. Methods Enzymol. 308, 246-276.
    • (1999) Methods Enzymol. , vol.308 , pp. 246-276
    • Shan, S.O.1    Herschlag, D.2
  • 46
    • 2642579275 scopus 로고    scopus 로고
    • Expression and purification of His-tagged rat mitochondrial 3-ketoacyl-CoA thiolase wild-type and His 352 mutant proteins
    • Zeng, J., and Li, D. (2004) Expression and purification of His-tagged rat mitochondrial 3-ketoacyl-CoA thiolase wild-type and His 352 mutant proteins. Prot. Expression Purif. 35, 320-326.
    • (2004) Prot. Expression Purif. , vol.35 , pp. 320-326
    • Zeng, J.1    Li, D.2
  • 47
    • 0016730832 scopus 로고
    • Substrate stereochemistry of the acetyl-CoA acetyltransferase reaction
    • Willadsen, P., and Eggerer, H. (1975) Substrate stereochemistry of the acetyl-CoA acetyltransferase reaction. Eur. J. Biochem. 54, 253-258.
    • (1975) Eur. J. Biochem. , vol.54 , pp. 253-258
    • Willadsen, P.1    Eggerer, H.2
  • 49
    • 0000047442 scopus 로고
    • Generation and stability of a simple thiol ester enolate in aqueous solution
    • Amyes, T. L., and Richard, J. P. (1992) Generation and stability of a simple thiol ester enolate in aqueous solution. J. Am. Chem. Soc. 114, 10297-10302.
    • (1992) J. Am. Chem. Soc. , vol.114 , pp. 10297-10302
    • Amyes, T.L.1    Richard, J.P.2
  • 50
    • 14144254724 scopus 로고    scopus 로고
    • High resolution crystal structures of human cytosolic thiolase (CT). a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I
    • Kursula, P., Sikkila, H., Fukao, T., Kondo, N., and Wierenga, R. K. (2005) High resolution crystal structures of human cytosolic thiolase (CT). A comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. J. Mol. Biol. 347, 189-201.
    • (2005) J. Mol. Biol. , vol.347 , pp. 189-201
    • Kursula, P.1    Sikkila, H.2    Fukao, T.3    Kondo, N.4    Wierenga, R.K.5
  • 52
    • 0013849090 scopus 로고
    • Zum Mechanismus der Biologischen Umwandlung von Citronensäure. IV. Citrate synthase ist eine Acetyl-CoA-Enolase
    • Eggerer, H. (1965) Zum Mechanismus der Biologischen Umwandlung von Citronensäure. IV. Citrate synthase ist eine Acetyl-CoA-Enolase. Biochem. Z. 343, 111-138.
    • (1965) Biochem. Z. , vol.343 , pp. 111-138
    • Eggerer, H.1
  • 53
    • 0035852799 scopus 로고    scopus 로고
    • Involvement of glycine 141 in substrate activation by enoyl-CoA hydratase
    • DOI 10.1021/bi001733z
    • Bell, A. F., Wu, J., Feng, Y., and Tonge, P. J. (2001) Involvement of glycine 141 in substrate activation by enoyl-CoA hydratase. Biochemistry 40, 1725-1733. (Pubitemid 32144043)
    • (2001) Biochemistry , vol.40 , Issue.6 , pp. 1725-1733
    • Bell, A.F.1    Wu, J.2    Feng, Y.3    Tonge, P.J.4
  • 54
    • 3543016798 scopus 로고    scopus 로고
    • Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex
    • DOI 10.1038/sj.emboj.7600298
    • Ishikawa, M., Tsuchiya, D., Oyama, T., Tsunaka, Y., and Morikawa, K. (2004) Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex. EMBO J. 23, 2745-2754. (Pubitemid 39013547)
    • (2004) EMBO Journal , vol.23 , Issue.14 , pp. 2745-2754
    • Ishikawa, M.1    Tsuchiya, D.2    Oyama, T.3    Tsunaka, Y.4    Morikawa, K.5
  • 55
    • 0031592777 scopus 로고    scopus 로고
    • The 1.8 a crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: Implications for substrate binding and reaction mechanism
    • Mathieu, M., Modis, Y., Zeelen, J. P., Engel, C. K., Abagyan, R. A., Ahlberg, A., Rasmussen, B., Lamzin, V. S., Kunau, W. H., and Wierenga, R. K. (1997) The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J. Mol. Biol. 273, 714-728.
    • (1997) J. Mol. Biol. , vol.273 , pp. 714-728
    • Mathieu, M.1    Modis, Y.2    Zeelen, J.P.3    Engel, C.K.4    Abagyan, R.A.5    Ahlberg, A.6    Rasmussen, B.7    Lamzin, V.S.8    Kunau, W.H.9    Wierenga, R.K.10
  • 56
    • 33646202811 scopus 로고    scopus 로고
    • The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation
    • Sundaramoorthy, R., Micossi, E., Alphey, M. S., Germain, V., Bryce, J. H., Smith, S. M., Leonard, G. A., and Hunter, W. N. (2006) The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation. J. Mol. Biol. 359, 347-357.
    • (2006) J. Mol. Biol. , vol.359 , pp. 347-357
    • Sundaramoorthy, R.1    Micossi, E.2    Alphey, M.S.3    Germain, V.4    Bryce, J.H.5    Smith, S.M.6    Leonard, A.G.7    Hunter, W.N.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.