-
2
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local outliers. In Proceedings ofthe ACM SIGMOD International Conference on Management of Data, pages 93-104, 2000.
-
(2000)
Proceedings ofthe ACM SIGMOD International Conference on Management of Data
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
3
-
-
32344449062
-
An approach to spacecraft anomaly detection problem using Kernel Feature Space
-
DOI 10.1145/1081870.1081917, KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly detection problem using kernel feature space. In Proceedings of the 11th ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining, pages 401-410, 2005. (Pubitemid 43218302)
-
(2005)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 401-410
-
-
Fujimaki, R.1
Yairi, T.2
Machida, K.3
-
4
-
-
33751057483
-
Semi-supervised outlier detection
-
Applied Computing 2006 - The 21st Annual ACM Symposium on Applied Computing - Proceedings of the 2006 ACM Symposium on Applied Computing
-
J. Gao, H. Cheng, and P.-N. Tan. Semi-supervised outlier detection. In Proceedings of the 2006 ACM symposium on Applied Computing, pages 635-636, 2006. (Pubitemid 44758858)
-
(2006)
Proceedings of the ACM Symposium on Applied Computing
, vol.1
, pp. 635-636
-
-
Gao, J.1
Cheng, H.2
Tan, P.-N.3
-
7
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2):85-126, 2004.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.1
Austin, J.2
-
8
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Scholkopf. Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems, volume 19, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.4
Scholkopf, B.5
-
11
-
-
37249036471
-
Outlier detection with kernel density functions
-
Machine Learning and Data Mining in Pattern Recognition - 5th International Conference, MLDM 2007, Proceedings
-
L. J. Latecki, A. Lazarevic, and D. Pokrajac. Outlier detection with kernel density functions. In Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition, pages 61-75, 2007. (Pubitemid 350270654)
-
(2007)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4571
, pp. 61-75
-
-
Latecki, L.J.1
Lazarevic, A.2
Pokrajac, D.3
-
13
-
-
78149306870
-
Building text classifiers using positive and unlabeled examples
-
B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers using positive and unlabeled examples. In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 179-186, 2003.
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining
, pp. 179-186
-
-
Liu, B.1
Dai, Y.2
Li, X.3
Lee, W.S.4
Yu, P.S.5
-
15
-
-
21844431631
-
Machine learning methods for predicting failures in hard drives: A multiple-instance application
-
J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Machine learning methods for predicting failures in hard drives: A multiple-instance application. Journal of Machine Learning Research, 6:783-816, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 783-816
-
-
Murray, J.F.1
Hughes, G.F.2
Kreutz-Delgado, K.3
-
17
-
-
84907095419
-
R: A language and environment for statistical computing
-
R Development Core Team
-
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2005.
-
(2005)
R Foundation for Statistical Computing
-
-
-
18
-
-
0342502195
-
Soft margins for AdaBoost
-
DOI 10.1023/A:1007618119488
-
G. Ratsch, T. Onoda, and K. R. Miiller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001. (Pubitemid 32188795)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
19
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Scholkopf, J. C. Piatt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443-1471,2001-1443-1471,20011443-20011471,20011443-1471, 2001.
-
(1443)
Neural Computation
, vol.13
, Issue.7
, pp. 20011443-20011471
-
-
Scholkopf, B.1
Piatt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
20
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
21
-
-
85161964516
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
M. Sugiyama, S. Nakajima, H. Kashima, P. von Biinau, and M. Kawanabe. Direct importance estimation with model selection and its application to covariate shift adaptation. In Advances in Neural Information Processing Systems 20, pages 1433-1440, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 1433-1440
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Von Biinau, P.4
Kawanabe, M.5
-
22
-
-
55549114317
-
Direct importance estimation for covariate shift adaptation
-
M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Biinau, and M. Kawanabe. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4), 2008. to appear.
-
(2008)
Annals of the Institute of Statistical Mathematics
, vol.60
, pp. 4
-
-
Sugiyama, M.1
Suzuki, T.2
Nakajima, S.3
Kashima, H.4
Von Biinau, P.5
Kawanabe, M.6
-
23
-
-
0942266514
-
Support vector data description
-
D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine Learning, 54(l):45-66, 2004.
-
(2004)
Machine Learning
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
24
-
-
3543125360
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
DOI 10.1023/B:DAMI.0000023676.72185.7c
-
K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. Online unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery, 8(3):275-300, 2004. (Pubitemid 39019964)
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, Issue.3
, pp. 275-300
-
-
Yamanishi, K.1
Takeuchi, J.-I.2
Williams, G.3
Milne, P.4
|