메뉴 건너뛰기




Volumn , Issue , 2008, Pages 223-232

Inlier-based outlier detection via direct density ratio estimation

Author keywords

Density ratio; Importance; Outlier detection

Indexed keywords

CLOSED FORM SOLUTIONS; CLOSED-FORM FORMULAE; CROSS VALIDATION; DENSITY ESTIMATION; DENSITY RATIO; HIGH-DIMENSIONAL PROBLEMS; IMPORTANCE; LEAVE-ONE-OUT ERROR; MASSIVE DATA SETS; OUTLIER DETECTION; REAL-WORLD DATASETS; REGULARIZATION PARAMETERS; SEMIPARAMETRIC; STATISTICAL APPROACH; TEST DATA; TEST SETS; TRAINING SETS; TUNING PARAMETER;

EID: 67049098640     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.49     Document Type: Conference Paper
Times cited : (67)

References (24)
  • 3
    • 32344449062 scopus 로고    scopus 로고
    • An approach to spacecraft anomaly detection problem using Kernel Feature Space
    • DOI 10.1145/1081870.1081917, KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly detection problem using kernel feature space. In Proceedings of the 11th ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining, pages 401-410, 2005. (Pubitemid 43218302)
    • (2005) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 401-410
    • Fujimaki, R.1    Yairi, T.2    Machida, K.3
  • 4
    • 33751057483 scopus 로고    scopus 로고
    • Semi-supervised outlier detection
    • Applied Computing 2006 - The 21st Annual ACM Symposium on Applied Computing - Proceedings of the 2006 ACM Symposium on Applied Computing
    • J. Gao, H. Cheng, and P.-N. Tan. Semi-supervised outlier detection. In Proceedings of the 2006 ACM symposium on Applied Computing, pages 635-636, 2006. (Pubitemid 44758858)
    • (2006) Proceedings of the ACM Symposium on Applied Computing , vol.1 , pp. 635-636
    • Gao, J.1    Cheng, H.2    Tan, P.-N.3
  • 7
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2):85-126, 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 10
  • 15
    • 21844431631 scopus 로고    scopus 로고
    • Machine learning methods for predicting failures in hard drives: A multiple-instance application
    • J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Machine learning methods for predicting failures in hard drives: A multiple-instance application. Journal of Machine Learning Research, 6:783-816, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 783-816
    • Murray, J.F.1    Hughes, G.F.2    Kreutz-Delgado, K.3
  • 17
    • 84907095419 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Development Core Team
    • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2005.
    • (2005) R Foundation for Statistical Computing
  • 18
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • DOI 10.1023/A:1007618119488
    • G. Ratsch, T. Onoda, and K. R. Miiller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001. (Pubitemid 32188795)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 19
    • 0000487102 scopus 로고
    • Estimating the support of a high-dimensional distribution
    • B. Scholkopf, J. C. Piatt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443-1471,2001-1443-1471,20011443-20011471,20011443-1471, 2001.
    • (1443) Neural Computation , vol.13 , Issue.7 , pp. 20011443-20011471
    • Scholkopf, B.1    Piatt, J.C.2    Shawe-Taylor, J.3    Smola, A.J.4    Williamson, R.C.5
  • 20
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 23
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine Learning, 54(l):45-66, 2004.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 24
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • DOI 10.1023/B:DAMI.0000023676.72185.7c
    • K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. Online unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery, 8(3):275-300, 2004. (Pubitemid 39019964)
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.3 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.-I.2    Williams, G.3    Milne, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.