메뉴 건너뛰기




Volumn 19, Issue 6, 2009, Pages 691-700

Elongation by RNA polymerase: a race through roadblocks

Author keywords

[No Author keywords available]

Indexed keywords

NUCLEOTIDE; RNA POLYMERASE; TRANSCRIPTION FACTOR;

EID: 70549105133     PISSN: 0959440X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sbi.2009.10.004     Document Type: Review
Times cited : (21)

References (53)
  • 2
    • 1142274214 scopus 로고    scopus 로고
    • Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms
    • Bushnell D.A., Westover K.D., Davis R.E., and Kornberg R.D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303 (2004) 983-988
    • (2004) Science , vol.303 , pp. 983-988
    • Bushnell, D.A.1    Westover, K.D.2    Davis, R.E.3    Kornberg, R.D.4
  • 3
    • 34447499995 scopus 로고    scopus 로고
    • Structural basis for transcription elongation by bacterial RNA polymerase
    • This paper reports the 2.5 Å resolution structure of the T. thermophilus elongation complex that provided a number of crucial mechanistic insights in the basic principles of transcription and revealed the key determinants in RNAP essential for fidelity, stability and processivity of transcription elongation.
    • Vassylyev D.G., Vassylyeva M.N., Perederina A., Tahirov T.H., and Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448 (2007) 157-162. This paper reports the 2.5 Å resolution structure of the T. thermophilus elongation complex that provided a number of crucial mechanistic insights in the basic principles of transcription and revealed the key determinants in RNAP essential for fidelity, stability and processivity of transcription elongation.
    • (2007) Nature , vol.448 , pp. 157-162
    • Vassylyev, D.G.1    Vassylyeva, M.N.2    Perederina, A.3    Tahirov, T.H.4    Artsimovitch, I.5
  • 4
    • 34447513771 scopus 로고    scopus 로고
    • Structural basis for substrate loading in bacterial RNA polymerase
    • The 3.0A resolution structures of the two bacterial ECs with the substrate analog revealed the inactive (pre-insertion) and active (insertion) substrate intermediates and provided an evidence for the two-step mechanism of substrate loading in the bacterial enzyme. The structures showed that isomerization from the inactive, open (pre-insertion) complex to the catalytically active closed (insertion) state occurs via substrate-induced folding of the TL. The antibiotic streptolydigin prevents proper folding of the TL thereby freezing the substrate complex in the inactive, pre-insertion configuration.
    • Vassylyev D.G., Vassylyeva M.N., Zhang J., Palangat M., Artsimovitch I., and Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448 (2007) 163-168. The 3.0A resolution structures of the two bacterial ECs with the substrate analog revealed the inactive (pre-insertion) and active (insertion) substrate intermediates and provided an evidence for the two-step mechanism of substrate loading in the bacterial enzyme. The structures showed that isomerization from the inactive, open (pre-insertion) complex to the catalytically active closed (insertion) state occurs via substrate-induced folding of the TL. The antibiotic streptolydigin prevents proper folding of the TL thereby freezing the substrate complex in the inactive, pre-insertion configuration.
    • (2007) Nature , vol.448 , pp. 163-168
    • Vassylyev, D.G.1    Vassylyeva, M.N.2    Zhang, J.3    Palangat, M.4    Artsimovitch, I.5    Landick, R.6
  • 5
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution
    • Gnatt A.L., Cramer P., Fu J., Bushnell D.A., and Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292 (2001) 1876-1882
    • (2001) Science , vol.292 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 6
    • 10944232674 scopus 로고    scopus 로고
    • Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
    • The authors present a medium resolution structure of the EC formed by yeast RNA polymerase II. The structure of the EC with bound NTP analog provided the first experimental evidence for the pre-insertion substrate intermediate in the eukaryotic system.
    • Kettenberger H., Armache K.J., and Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16 (2004) 955-965. The authors present a medium resolution structure of the EC formed by yeast RNA polymerase II. The structure of the EC with bound NTP analog provided the first experimental evidence for the pre-insertion substrate intermediate in the eukaryotic system.
    • (2004) Mol Cell , vol.16 , pp. 955-965
    • Kettenberger, H.1    Armache, K.J.2    Cramer, P.3
  • 7
    • 1142310578 scopus 로고    scopus 로고
    • Structural basis of transcription: separation of RNA from DNA by RNA polymerase II
    • Westover K.D., Bushnell D.A., and Kornberg R.D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303 (2004) 1014-1016
    • (2004) Science , vol.303 , pp. 1014-1016
    • Westover, K.D.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 8
    • 8344234112 scopus 로고    scopus 로고
    • Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center
    • Westover K.D., Bushnell D.A., and Kornberg R.D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119 (2004) 481-489
    • (2004) Cell , vol.119 , pp. 481-489
    • Westover, K.D.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 9
    • 33751235874 scopus 로고    scopus 로고
    • Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis
    • In this work, the authors reported a number of the eukaryotic ECs with different (cognate and non-cognate NTPs) and demonstrated that structural reconfiguration of the TL mediates closure of the active site in the presence of the cognate NTP in the yeast enzyme in a similar fashion of that of the bacterial system.
    • Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., and Kornberg R.D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127 (2006) 941-954. In this work, the authors reported a number of the eukaryotic ECs with different (cognate and non-cognate NTPs) and demonstrated that structural reconfiguration of the TL mediates closure of the active site in the presence of the cognate NTP in the yeast enzyme in a similar fashion of that of the bacterial system.
    • (2006) Cell , vol.127 , pp. 941-954
    • Wang, D.1    Bushnell, D.A.2    Westover, K.D.3    Kaplan, C.D.4    Kornberg, R.D.5
  • 10
    • 33846980409 scopus 로고    scopus 로고
    • CPD damage recognition by transcribing RNA polymerase II
    • Brueckner F., Hennecke U., Carell T., and Cramer P. CPD damage recognition by transcribing RNA polymerase II. Science 315 (2007) 859-862
    • (2007) Science , vol.315 , pp. 859-862
    • Brueckner, F.1    Hennecke, U.2    Carell, T.3    Cramer, P.4
  • 11
    • 66349138227 scopus 로고    scopus 로고
    • Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution
    • Wang D., Bushnell D.A., Huang X., Westover K.D., Levitt M., and Kornberg R.D. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324 (2009) 1203-1206
    • (2009) Science , vol.324 , pp. 1203-1206
    • Wang, D.1    Bushnell, D.A.2    Huang, X.3    Westover, K.D.4    Levitt, M.5    Kornberg, R.D.6
  • 12
    • 67449116330 scopus 로고    scopus 로고
    • Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA
    • Sydow J.F., Brueckner F., Cheung A.C.M., Damsma G.E., Dengl S., Lehmann E., Vassylyev D.G., and Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell. 34 (2009) 710-721
    • (2009) Mol. Cell. , vol.34 , pp. 710-721
    • Sydow, J.F.1    Brueckner, F.2    Cheung, A.C.M.3    Damsma, G.E.4    Dengl, S.5    Lehmann, E.6    Vassylyev, D.G.7    Cramer, P.8
  • 13
    • 49449102926 scopus 로고    scopus 로고
    • Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation
    • The structure of the yeast EC with bound toxin, α-amanitin revealed the important, pre-templated translocation intermediate and suggested the essential roles of the bridge helix and TL in translocation.
    • Brueckner F., and Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15 (2008) 811-818. The structure of the yeast EC with bound toxin, α-amanitin revealed the important, pre-templated translocation intermediate and suggested the essential roles of the bridge helix and TL in translocation.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 811-818
    • Brueckner, F.1    Cramer, P.2
  • 14
    • 44449103640 scopus 로고    scopus 로고
    • The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin
    • The structure of eukaryotic RNAP complexed with α-amanitin and subsequent biochemical data demonstrated that the TL is an important determinant of transcription fidelity.
    • Kaplan C.D., Larsson K.M., and Kornberg R.D. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 30 (2008) 547-556. The structure of eukaryotic RNAP complexed with α-amanitin and subsequent biochemical data demonstrated that the TL is an important determinant of transcription fidelity.
    • (2008) Mol Cell , vol.30 , pp. 547-556
    • Kaplan, C.D.1    Larsson, K.M.2    Kornberg, R.D.3
  • 19
    • 58249100113 scopus 로고    scopus 로고
    • Transcription inactivation through local refolding of the RNA polymerase structure
    • The structure of the bacterial RNAP holoenzyme in complex with antibiotic myxopyronin revealed that refolding of the switch-2 segment mediates downstream propagation of the transcription bubble during open complex formation. The data suggest that the conformational transitions of the switch-2 may play an essential regulatory role.
    • Belogurov G.A., Vassylyeva M.N., Sevostyanova A., Appleman J.R., Xiang A.X., Lira R., Webber S.E., Klyuyev S., Nudler E., Artsimovitch I., et al. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457 (2009) 332-335. The structure of the bacterial RNAP holoenzyme in complex with antibiotic myxopyronin revealed that refolding of the switch-2 segment mediates downstream propagation of the transcription bubble during open complex formation. The data suggest that the conformational transitions of the switch-2 may play an essential regulatory role.
    • (2009) Nature , vol.457 , pp. 332-335
    • Belogurov, G.A.1    Vassylyeva, M.N.2    Sevostyanova, A.3    Appleman, J.R.4    Xiang, A.X.5    Lira, R.6    Webber, S.E.7    Klyuyev, S.8    Nudler, E.9    Artsimovitch, I.10
  • 23
    • 39149093390 scopus 로고    scopus 로고
    • Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement
    • Naji S., Bertero M.G., Spitalny P., Cramer P., and Thomm M. Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement. Nucleic Acids Res 36 (2008) 676-687
    • (2008) Nucleic Acids Res , vol.36 , pp. 676-687
    • Naji, S.1    Bertero, M.G.2    Spitalny, P.3    Cramer, P.4    Thomm, M.5
  • 24
    • 33746811857 scopus 로고    scopus 로고
    • The role of the lid element in transcription by E. coli RNA polymerase
    • Toulokhonov I., and Landick R. The role of the lid element in transcription by E. coli RNA polymerase. J Mol Biol 361 (2006) 644-658
    • (2006) J Mol Biol , vol.361 , pp. 644-658
    • Toulokhonov, I.1    Landick, R.2
  • 25
    • 67649415367 scopus 로고    scopus 로고
    • Maintenance of RNA-DNA hybrid length in bacterial RNA polymerases
    • Kent T., Kashkina E., Anikin M., and Temiakov D. Maintenance of RNA-DNA hybrid length in bacterial RNA polymerases. J Biol Chem 284 (2009) 13497-13504
    • (2009) J Biol Chem , vol.284 , pp. 13497-13504
    • Kent, T.1    Kashkina, E.2    Anikin, M.3    Temiakov, D.4
  • 27
    • 1842715585 scopus 로고    scopus 로고
    • Forward translocation is the natural pathway of RNA release at an intrinsic terminator
    • Santangelo T.J., and Roberts J.W. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol Cell 14 (2004) 117-126
    • (2004) Mol Cell , vol.14 , pp. 117-126
    • Santangelo, T.J.1    Roberts, J.W.2
  • 28
    • 34547204502 scopus 로고    scopus 로고
    • A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing
    • Toulokhonov I., Zhang J., Palangat M., and Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 27 (2007) 406-419
    • (2007) Mol Cell , vol.27 , pp. 406-419
    • Toulokhonov, I.1    Zhang, J.2    Palangat, M.3    Landick, R.4
  • 29
    • 0037112082 scopus 로고    scopus 로고
    • Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase
    • Yin Y.W., and Steitz T.A. Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298 (2002) 1387-1395
    • (2002) Science , vol.298 , pp. 1387-1395
    • Yin, Y.W.1    Steitz, T.A.2
  • 31
    • 0033529089 scopus 로고    scopus 로고
    • Structural basis for initiation of transcription from an RNA polymerase-promoter complex
    • Cheetham G.M., Jeruzalmi D., and Steitz T.A. Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature 399 (1999) 80-83
    • (1999) Nature , vol.399 , pp. 80-83
    • Cheetham, G.M.1    Jeruzalmi, D.2    Steitz, T.A.3
  • 32
    • 58849139777 scopus 로고    scopus 로고
    • Allosteric control of Escherichia coli rRNA promoter complexes by DksA
    • Rutherford S.T., Villers C.L., Lee J.H., Ross W., and Gourse R.L. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev 23 (2009) 236-248
    • (2009) Genes Dev , vol.23 , pp. 236-248
    • Rutherford, S.T.1    Villers, C.L.2    Lee, J.H.3    Ross, W.4    Gourse, R.L.5
  • 34
    • 34147155174 scopus 로고    scopus 로고
    • Structural basis for converting a general transcription factor into an operon-specific virulence regulator
    • The structure of RfaH allowed to elucidate mechanism of action of this transcription factor in which the protein undergoes DNA-dependent activation via the domain dissociation that is required to open the binding cavity and to form a stable complex with RNAP. The structural analysis also allowed to identify the β′-subunit clamp helices as the RfaH major binding site on RNAP to which the protein is recruited through the hydrophobic interactions.
    • Belogurov G.A., Vassylyeva M.N., Svetlov V., Klyuyev S., Grishin N.V., Vassylyev D.G., and Artsimovitch I. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell 26 (2007) 117-129. The structure of RfaH allowed to elucidate mechanism of action of this transcription factor in which the protein undergoes DNA-dependent activation via the domain dissociation that is required to open the binding cavity and to form a stable complex with RNAP. The structural analysis also allowed to identify the β′-subunit clamp helices as the RfaH major binding site on RNAP to which the protein is recruited through the hydrophobic interactions.
    • (2007) Mol Cell , vol.26 , pp. 117-129
    • Belogurov, G.A.1    Vassylyeva, M.N.2    Svetlov, V.3    Klyuyev, S.4    Grishin, N.V.5    Vassylyev, D.G.6    Artsimovitch, I.7
  • 35
    • 38949110771 scopus 로고    scopus 로고
    • The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex
    • Sevostyanova A., Svetlov V., Vassylyev D.G., and Artsimovitch I. The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex. Proc Natl Acad Sci U S A 105 (2008) 865-870
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 865-870
    • Sevostyanova, A.1    Svetlov, V.2    Vassylyev, D.G.3    Artsimovitch, I.4
  • 36
    • 0037009445 scopus 로고    scopus 로고
    • Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities
    • Steiner T., Kaiser J.T., Marinkovic S., Huber R., and Wahl M.C. Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J 21 (2002) 4641-4653
    • (2002) EMBO J , vol.21 , pp. 4641-4653
    • Steiner, T.1    Kaiser, J.T.2    Marinkovic, S.3    Huber, R.4    Wahl, M.C.5
  • 37
    • 0035957687 scopus 로고    scopus 로고
    • Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins
    • Toulokhonov I., Artsimovitch I., and Landick R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292 (2001) 730-733
    • (2001) Science , vol.292 , pp. 730-733
    • Toulokhonov, I.1    Artsimovitch, I.2    Landick, R.3
  • 38
    • 0035861997 scopus 로고    scopus 로고
    • Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 A resolution
    • Gopal B., Haire L.F., Gamblin S.J., Dodson E.J., Lane A.N., Papavinasasundaram K.G., Colston M.J., and Dodson G. Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 A resolution. J Mol Biol 314 (2001) 1087-1095
    • (2001) J Mol Biol , vol.314 , pp. 1087-1095
    • Gopal, B.1    Haire, L.F.2    Gamblin, S.J.3    Dodson, E.J.4    Lane, A.N.5    Papavinasasundaram, K.G.6    Colston, M.J.7    Dodson, G.8
  • 40
    • 4043069926 scopus 로고    scopus 로고
    • DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP
    • Paul B.J., Barker M.M., Ross W., Schneider D.A., Webb C., Foster J.W., and Gourse R.L. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118 (2004) 311-322
    • (2004) Cell , vol.118 , pp. 311-322
    • Paul, B.J.1    Barker, M.M.2    Ross, W.3    Schneider, D.A.4    Webb, C.5    Foster, J.W.6    Gourse, R.L.7
  • 41
    • 0034803603 scopus 로고    scopus 로고
    • Escherichia coli transcript cleavage factors GreA and GreB: functions and mechanisms of action
    • Borukhov S., Laptenko O., and Lee J. Escherichia coli transcript cleavage factors GreA and GreB: functions and mechanisms of action. Methods Enzymol 342 (2001) 64-76
    • (2001) Methods Enzymol , vol.342 , pp. 64-76
    • Borukhov, S.1    Laptenko, O.2    Lee, J.3
  • 43
    • 0346243938 scopus 로고    scopus 로고
    • Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase
    • Laptenko O., Lee J., Lomakin I., and Borukhov S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J 22 (2003) 6322-6334
    • (2003) EMBO J , vol.22 , pp. 6322-6334
    • Laptenko, O.1    Lee, J.2    Lomakin, I.3    Borukhov, S.4
  • 44
    • 0043244877 scopus 로고    scopus 로고
    • Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase
    • Opalka N., Chlenov M., Chacon P., Rice W.J., Wriggers W., and Darst S.A. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114 (2003) 335-345
    • (2003) Cell , vol.114 , pp. 335-345
    • Opalka, N.1    Chlenov, M.2    Chacon, P.3    Rice, W.J.4    Wriggers, W.5    Darst, S.A.6
  • 45
    • 35748963229 scopus 로고    scopus 로고
    • The carboxy-terminal coiled-coil of the RNA polymerase beta'-subunit is the main binding site for Gre factors
    • The structure of the E. coli GreB protein allowed to identify the β′-subunit C-terminal coiled-coil (β′CC) of RNAP as the major anchor for the protein to which GreB binds through predominantly the hydrophobic interactions.
    • Vassylyeva M.N., Svetlov V., Dearborn A.D., Klyuyev S., Artsimovitch I., and Vassylyev D.G. The carboxy-terminal coiled-coil of the RNA polymerase beta'-subunit is the main binding site for Gre factors. EMBO Rep 8 (2007) 1038-1043. The structure of the E. coli GreB protein allowed to identify the β′-subunit C-terminal coiled-coil (β′CC) of RNAP as the major anchor for the protein to which GreB binds through predominantly the hydrophobic interactions.
    • (2007) EMBO Rep , vol.8 , pp. 1038-1043
    • Vassylyeva, M.N.1    Svetlov, V.2    Dearborn, A.D.3    Klyuyev, S.4    Artsimovitch, I.5    Vassylyev, D.G.6
  • 46
    • 33644976966 scopus 로고    scopus 로고
    • Regulation through the RNA polymerase secondary channel. Structural and functional variability of the coiled-coil transcription factors
    • Symersky J., Perederina A., Vassylyeva M.N., Svetlov V., Artsimovitch I., and Vassylyev D.G. Regulation through the RNA polymerase secondary channel. Structural and functional variability of the coiled-coil transcription factors. J Biol Chem 281 (2006) 1309-1312
    • (2006) J Biol Chem , vol.281 , pp. 1309-1312
    • Symersky, J.1    Perederina, A.2    Vassylyeva, M.N.3    Svetlov, V.4    Artsimovitch, I.5    Vassylyev, D.G.6
  • 47
    • 30344459408 scopus 로고    scopus 로고
    • Crystal structure of Thermus aquaticus Gfh1, a Gre-factor paralog that inhibits rather than stimulates transcript cleavage
    • Lamour V., Hogan B.P., Erie D.A., and Darst S.A. Crystal structure of Thermus aquaticus Gfh1, a Gre-factor paralog that inhibits rather than stimulates transcript cleavage. J Mol Biol 356 (2006) 179-188
    • (2006) J Mol Biol , vol.356 , pp. 179-188
    • Lamour, V.1    Hogan, B.P.2    Erie, D.A.3    Darst, S.A.4
  • 52
    • 67649432571 scopus 로고    scopus 로고
    • Dimerization of the quorum-sensing transcription factor TraR enhances resistance to cytoplasmic proteolysis
    • Pinto U.M., and Winans S.C. Dimerization of the quorum-sensing transcription factor TraR enhances resistance to cytoplasmic proteolysis. Mol Microbiol 73 (2009) 32-42
    • (2009) Mol Microbiol , vol.73 , pp. 32-42
    • Pinto, U.M.1    Winans, S.C.2
  • 53
    • 25144510935 scopus 로고    scopus 로고
    • Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit
    • Chlenov M., Masuda S., Murakami K.S., Nikiforov V., Darst S.A., and Mustaev A. Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit. J Mol Biol 353 (2005) 138-154
    • (2005) J Mol Biol , vol.353 , pp. 138-154
    • Chlenov, M.1    Masuda, S.2    Murakami, K.S.3    Nikiforov, V.4    Darst, S.A.5    Mustaev, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.