메뉴 건너뛰기




Volumn 13, Issue 9, 2009, Pages 381-388

Does Cognitive Science Need Kernels?

Author keywords

[No Author keywords available]

Indexed keywords

BEHAVIORAL DATA; COGNITIVE SCIENCE; COMPUTATIONAL LEVEL; DATA ANALYSIS; KERNEL METHODS; MACHINE-LEARNING; THEORETICAL RESULT;

EID: 69949111927     PISSN: 13646613     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tics.2009.06.002     Document Type: Article
Times cited : (45)

References (80)
  • 3
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., et al. A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006) 1527-1554
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1
  • 6
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65 (1958) 386-408
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 7
    • 0003444646 scopus 로고
    • Rumelhart D.E., and McClelland J.L. (Eds), MIT Press
    • In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel Distributed Processing (1986), MIT Press
    • (1986) Parallel Distributed Processing
  • 9
    • 50849109367 scopus 로고    scopus 로고
    • Three case studies in the Bayesian analysis of cognitive models
    • Lee M.D. Three case studies in the Bayesian analysis of cognitive models. Psychon. Bull. Rev. 15 (2008) 1-15
    • (2008) Psychon. Bull. Rev. , vol.15 , pp. 1-15
    • Lee, M.D.1
  • 10
    • 33746263998 scopus 로고    scopus 로고
    • Probabilistic models of cognition: Conceptual foundations
    • Chater N., et al. Probabilistic models of cognition: Conceptual foundations. Trends Cogn. Sci. 10 (2006) 287-291
    • (2006) Trends Cogn. Sci. , vol.10 , pp. 287-291
    • Chater, N.1
  • 11
    • 36148995502 scopus 로고    scopus 로고
    • A tutorial on kernel methods for categorization
    • Jäkel F., et al. A tutorial on kernel methods for categorization. J. Math. Psychol. 51 (2007) 343-358
    • (2007) J. Math. Psychol. , vol.51 , pp. 343-358
    • Jäkel, F.1
  • 12
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • Hofmann T., et al. Kernel methods in machine learning. Ann. Stat. 36 (2008) 1171-1220
    • (2008) Ann. Stat. , vol.36 , pp. 1171-1220
    • Hofmann, T.1
  • 14
    • 0342973074 scopus 로고
    • Context theory of classification learning
    • Medin D.L., and Schaffer M.M. Context theory of classification learning. Psychol. Rev. 85 (1978) 207-238
    • (1978) Psychol. Rev. , vol.85 , pp. 207-238
    • Medin, D.L.1    Schaffer, M.M.2
  • 15
    • 0022686961 scopus 로고
    • Attention, similarity, and the identification-categorization relationship
    • Nosofsky R.M. Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. Gen. 115 (1986) 39-57
    • (1986) J. Exp. Psychol. Gen. , vol.115 , pp. 39-57
    • Nosofsky, R.M.1
  • 17
    • 69949092936 scopus 로고    scopus 로고
    • Minsky, M. and Papert, S. (1967) Linearly unrecognizable patterns. A. I. Memo No. 140, MIT
    • Minsky, M. and Papert, S. (1967) Linearly unrecognizable patterns. A. I. Memo No. 140, MIT
  • 18
    • 0026477904 scopus 로고
    • ALCOVE: an exemplar-based connectionist model of category learning
    • Kruschke J.K. ALCOVE: an exemplar-based connectionist model of category learning. Psychol. Rev. 99 (1992) 22-44
    • (1992) Psychol. Rev. , vol.99 , pp. 22-44
    • Kruschke, J.K.1
  • 19
    • 0002623089 scopus 로고
    • Exemplar-based approach to relating categorization, identification, and recognition
    • Ashby F.G. (Ed), Erlbaum
    • Nosofsky R.M. Exemplar-based approach to relating categorization, identification, and recognition. In: Ashby F.G. (Ed). Multidimensional Models of Perception and Cognition (1992), Erlbaum 363-393
    • (1992) Multidimensional Models of Perception and Cognition , pp. 363-393
    • Nosofsky, R.M.1
  • 20
    • 48049105122 scopus 로고    scopus 로고
    • Generalization and similarity in exemplar models of categorization: Insights from machine learning
    • Jäkel F., et al. Generalization and similarity in exemplar models of categorization: Insights from machine learning. Psychon. Bull. Rev. 15 (2008) 256-271
    • (2008) Psychon. Bull. Rev. , vol.15 , pp. 256-271
    • Jäkel, F.1
  • 21
    • 53849123303 scopus 로고    scopus 로고
    • Similarity, kernels and the triangle inequality
    • Jäkel F., et al. Similarity, kernels and the triangle inequality. J. Math. Psychol. 52 (2008) 297-303
    • (2008) J. Math. Psychol. , vol.52 , pp. 297-303
    • Jäkel, F.1
  • 22
    • 1942539715 scopus 로고    scopus 로고
    • SUSTAIN: a network model of category learning
    • Love B.C., et al. SUSTAIN: a network model of category learning. Psychol. Rev. 111 (2004) 309-332
    • (2004) Psychol. Rev. , vol.111 , pp. 309-332
    • Love, B.C.1
  • 23
    • 0025037991 scopus 로고
    • A network that learns to recognize three-dimensional objects
    • Poggio T., and Edelman S. A network that learns to recognize three-dimensional objects. Nature 343 (1990) 263-266
    • (1990) Nature , vol.343 , pp. 263-266
    • Poggio, T.1    Edelman, S.2
  • 24
    • 0026536967 scopus 로고
    • Psychophysical support for a two-dimensional view interpolation theory of object recognition
    • Bülthoff H.H., and Edelman S. Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc. Natl. Acad. Sci. USA 89 (1992) 60-64
    • (1992) Proc. Natl. Acad. Sci. USA , vol.89 , pp. 60-64
    • Bülthoff, H.H.1    Edelman, S.2
  • 25
    • 69949104645 scopus 로고    scopus 로고
    • Poggio, T. and Girosi, F. (1989) A theory of networks for approximation and learning. A. I. Memo No. 1140, MIT
    • Poggio, T. and Girosi, F. (1989) A theory of networks for approximation and learning. A. I. Memo No. 1140, MIT
  • 27
    • 7244219792 scopus 로고    scopus 로고
    • Generalization in vision and motor control
    • Poggio T., and Bizzi E. Generalization in vision and motor control. Nature 431 (2004) 768-774
    • (2004) Nature , vol.431 , pp. 768-774
    • Poggio, T.1    Bizzi, E.2
  • 28
    • 0031746593 scopus 로고    scopus 로고
    • The development of features in object concepts
    • Schyns P.G., et al. The development of features in object concepts. Behav. Brain Sci. 21 (1998) 1-17
    • (1998) Behav. Brain Sci. , vol.21 , pp. 1-17
    • Schyns, P.G.1
  • 29
    • 84898959863 scopus 로고    scopus 로고
    • Machine learning applied to perception: decision-images for gender classification
    • Saul L.K., et al. (Ed), MIT Press
    • Wichmann F.A., et al. Machine learning applied to perception: decision-images for gender classification. In: Saul L.K., et al. (Ed). Advances in Neural Information Processing Systems 17 (2005), MIT Press 1489-1496
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 1489-1496
    • Wichmann, F.A.1
  • 30
    • 84864044921 scopus 로고    scopus 로고
    • A nonparametric approach to bottom-up visual saliency
    • Schölkopf B., et al. (Ed), MIT Press
    • Kienzle W., et al. A nonparametric approach to bottom-up visual saliency. In: Schölkopf B., et al. (Ed). Advances in Neural Information Processing Systems 19 (2007), MIT Press 689-696
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 689-696
    • Kienzle, W.1
  • 31
    • 69949100930 scopus 로고    scopus 로고
    • Center-surround patterns emerge as optimal predictors for human saccade targets
    • Kienzle, W. et al.. Center-surround patterns emerge as optimal predictors for human saccade targets. J. Vis., 9, 1-15
    • J. Vis , vol.9 , pp. 1-15
    • Kienzle, W.1
  • 32
    • 41849148607 scopus 로고    scopus 로고
    • Plant classification from bat-like echolocation signals
    • doi:10.1371/journal.pcbi.1000032
    • Yovel Y., et al. Plant classification from bat-like echolocation signals. PLoS Comput. Biol (2008) doi:10.1371/journal.pcbi.1000032
    • (2008) PLoS Comput. Biol
    • Yovel, Y.1
  • 33
    • 0034933214 scopus 로고    scopus 로고
    • Bubbles: a technique to reveal the use of information in recognition tasks
    • Gosselin F., and Schyns P.G. Bubbles: a technique to reveal the use of information in recognition tasks. Vis. Res 41 (2001) 2261-2271
    • (2001) Vis. Res , vol.41 , pp. 2261-2271
    • Gosselin, F.1    Schyns, P.G.2
  • 34
    • 60749108920 scopus 로고    scopus 로고
    • Uncovering gender discrimination cues in a realistic setting
    • Dupuis-Roy N., et al. Uncovering gender discrimination cues in a realistic setting. J. Vision 9 (2009) 1-8
    • (2009) J. Vision , vol.9 , pp. 1-8
    • Dupuis-Roy, N.1
  • 35
    • 0015080310 scopus 로고
    • Stimulus features in signal detection
    • Ahumada A.J., and Lovell J. Stimulus features in signal detection. J. Acoust. Soc. Am. 49 (1971) 1751-1756
    • (1971) J. Acoust. Soc. Am. , vol.49 , pp. 1751-1756
    • Ahumada, A.J.1    Lovell, J.2
  • 36
    • 33646673084 scopus 로고    scopus 로고
    • Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer
    • Abbey C.K., and Eckstein M.P. Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer. J. Vision 6 (2006) 335-355
    • (2006) J. Vision , vol.6 , pp. 335-355
    • Abbey, C.K.1    Eckstein, M.P.2
  • 38
    • 33646033732 scopus 로고    scopus 로고
    • Receptive versus perceptive fields from the reverse-correlation viewpoint
    • Neri P., and Levi D.M. Receptive versus perceptive fields from the reverse-correlation viewpoint. Vision Res. 46 (2006) 2465-2474
    • (2006) Vision Res. , vol.46 , pp. 2465-2474
    • Neri, P.1    Levi, D.M.2
  • 39
    • 0001290509 scopus 로고
    • From tools to theories: A heuristic of discovery in cognitive psychology
    • Gigerenzer G. From tools to theories: A heuristic of discovery in cognitive psychology. Psychol. Rev. 98 (1991) 254-267
    • (1991) Psychol. Rev. , vol.98 , pp. 254-267
    • Gigerenzer, G.1
  • 40
    • 4143105851 scopus 로고    scopus 로고
    • Computational approaches to the development of perceptual expertise
    • Palmeri T.J., et al. Computational approaches to the development of perceptual expertise. Trends Cogn. Sci. 8 (2004) 286-290
    • (2004) Trends Cogn. Sci. , vol.8 , pp. 286-290
    • Palmeri, T.J.1
  • 42
    • 0001290624 scopus 로고
    • Categorization as probability density estimation
    • Ashby F.G., and Alfonso-Reese L.A. Categorization as probability density estimation. J. Math. Psychol. 39 (1995) 216-233
    • (1995) J. Math. Psychol. , vol.39 , pp. 216-233
    • Ashby, F.G.1    Alfonso-Reese, L.A.2
  • 43
    • 33645704714 scopus 로고    scopus 로고
    • The time course of perceptual categorization
    • Hahn U., and Ramscar M. (Eds), Oxford University Press
    • Palmeri T.J. The time course of perceptual categorization. In: Hahn U., and Ramscar M. (Eds). Similarity and Categorization (2001), Oxford University Press 193-224
    • (2001) Similarity and Categorization , pp. 193-224
    • Palmeri, T.J.1
  • 45
    • 0028541936 scopus 로고
    • Models of the effects of prior knowledge on category learning
    • Heit E. Models of the effects of prior knowledge on category learning. J. Exp. Psychol. Learn. Mem. Cogn. 20 (1994) 1264-1282
    • (1994) J. Exp. Psychol. Learn. Mem. Cogn. , vol.20 , pp. 1264-1282
    • Heit, E.1
  • 46
    • 21844516524 scopus 로고
    • Flexible tuning of similarity in exemplar-based categorization
    • Lamberts K. Flexible tuning of similarity in exemplar-based categorization. J. Exp. Psychol. Gen. 20 (1994) 1003-1021
    • (1994) J. Exp. Psychol. Gen. , vol.20 , pp. 1003-1021
    • Lamberts, K.1
  • 47
    • 0034280904 scopus 로고    scopus 로고
    • Exemplar-based accounts of "multiple-system" phenomena in perceptual categorization
    • Nosofsky R.M., and Johansen M.K. Exemplar-based accounts of "multiple-system" phenomena in perceptual categorization. Psychon. Bull. Rev. 7 (2000) 375-402
    • (2000) Psychon. Bull. Rev. , vol.7 , pp. 375-402
    • Nosofsky, R.M.1    Johansen, M.K.2
  • 48
    • 35348888561 scopus 로고    scopus 로고
    • Rules-plus-exception tasks: A problem for exemplar models?
    • Rodrigues P.M., and Murre J.M.J. Rules-plus-exception tasks: A problem for exemplar models?. Psychon. Bull. Rev. 14 (2007) 640-646
    • (2007) Psychon. Bull. Rev. , vol.14 , pp. 640-646
    • Rodrigues, P.M.1    Murre, J.M.J.2
  • 49
    • 0032114172 scopus 로고    scopus 로고
    • A neuropsychological theory of multiple systems in category learning
    • Ashby F.G., et al. A neuropsychological theory of multiple systems in category learning. Psychol. Rev. 105 (1998) 442-481
    • (1998) Psychol. Rev. , vol.105 , pp. 442-481
    • Ashby, F.G.1
  • 50
    • 0032087040 scopus 로고    scopus 로고
    • Rules and exemplars in category learning
    • Erickson M.A., and Kruschke J.K. Rules and exemplars in category learning. J. Exp. Psychol. Gen. 127 (1998) 107-140
    • (1998) J. Exp. Psychol. Gen. , vol.127 , pp. 107-140
    • Erickson, M.A.1    Kruschke, J.K.2
  • 51
    • 50949127230 scopus 로고    scopus 로고
    • Rule-based extrapolation: A continuing challenge for exemplar models
    • Denton S.E., et al. Rule-based extrapolation: A continuing challenge for exemplar models. Psychon. Bull. Rev. 15 (2008) 780-786
    • (2008) Psychon. Bull. Rev. , vol.15 , pp. 780-786
    • Denton, S.E.1
  • 52
    • 0032335077 scopus 로고    scopus 로고
    • Prototypes in the mist: The early epochs of category learning
    • Smith J.D., and Minda J.P. Prototypes in the mist: The early epochs of category learning. J. Exp. Psychol. Learn. Mem. Cogn. 24 (1998) 1411-1436
    • (1998) J. Exp. Psychol. Learn. Mem. Cogn. , vol.24 , pp. 1411-1436
    • Smith, J.D.1    Minda, J.P.2
  • 54
    • 0036728612 scopus 로고    scopus 로고
    • Exemplar and prototype models revisited: response strategies, selective attention, and stimulus generalization
    • Nosofsky R.M., and Zaki S.R. Exemplar and prototype models revisited: response strategies, selective attention, and stimulus generalization. J. Exp. Psychol. Learn. Mem. Cogn. 28 (2002) 924-940
    • (2002) J. Exp. Psychol. Learn. Mem. Cogn. , vol.28 , pp. 924-940
    • Nosofsky, R.M.1    Zaki, S.R.2
  • 55
    • 33847655699 scopus 로고    scopus 로고
    • On the interaction between exemplar-based concepts and a response scaling process
    • Navarro D.J. On the interaction between exemplar-based concepts and a response scaling process. J. Math. Psychol. 51 (2007) 85-98
    • (2007) J. Math. Psychol. , vol.51 , pp. 85-98
    • Navarro, D.J.1
  • 56
    • 0031731695 scopus 로고    scopus 로고
    • Representation is representation of similarities
    • Edelman S. Representation is representation of similarities. Behav. Brain Sci. 21 (1998) 449-498
    • (1998) Behav. Brain Sci. , vol.21 , pp. 449-498
    • Edelman, S.1
  • 57
    • 0036252389 scopus 로고    scopus 로고
    • Mixture models of categorization
    • Rosseel Y. Mixture models of categorization. J. Math. Psychol. 46 (2002) 178-210
    • (2002) J. Math. Psychol. , vol.46 , pp. 178-210
    • Rosseel, Y.1
  • 58
    • 50949117247 scopus 로고    scopus 로고
    • In search of abstraction: the varying abstraction model of categorization
    • Vanpaemel W., and Storms G. In search of abstraction: the varying abstraction model of categorization. Psychon. Bull. Rev. 15 (2008) 732-749
    • (2008) Psychon. Bull. Rev. , vol.15 , pp. 732-749
    • Vanpaemel, W.1    Storms, G.2
  • 59
    • 66849111649 scopus 로고    scopus 로고
    • How many exemplars are used? Explorations with the Rex Leopold I model
    • De Schryver M., et al. How many exemplars are used? Explorations with the Rex Leopold I model. Psychon. Bull. Rev. 16 (2009) 337-343
    • (2009) Psychon. Bull. Rev. , vol.16 , pp. 337-343
    • De Schryver, M.1
  • 60
    • 0029294644 scopus 로고
    • Shape representation in the inferior temporal cortex of monkeys
    • Logothetis N.K., et al. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5 (1995) 552-563
    • (1995) Curr. Biol. , vol.5 , pp. 552-563
    • Logothetis, N.K.1
  • 61
    • 0037122807 scopus 로고    scopus 로고
    • Visual categorization shapes feature selectivity in the primate temporal cortex
    • Sigala N., and Logothetis N.K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415 (2002) 318-320
    • (2002) Nature , vol.415 , pp. 318-320
    • Sigala, N.1    Logothetis, N.K.2
  • 62
    • 0035195699 scopus 로고    scopus 로고
    • Inferotemporal neurons represent low-dimensional configurations of parameterized shapes
    • Op de Beeck H., et al. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nat. Neurosci. 4 (2001) 1244-1252
    • (2001) Nat. Neurosci. , vol.4 , pp. 1244-1252
    • Op de Beeck, H.1
  • 67
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • Poggio T., et al. General conditions for predictivity in learning theory. Nature 428 (2004) 419-422
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1
  • 68
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 69
    • 84899006163 scopus 로고    scopus 로고
    • On the complexity of learning the kernel matrix
    • Becker S. et al, eds, MIT Press
    • Bousquet O. and Herrmann D., (2003) On the complexity of learning the kernel matrix. In Advances in Neural Information Processing Systems 15 (Becker S. et al., eds), MIT Press, 415-422
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 415-422
    • Bousquet, O.1    Herrmann, D.2
  • 70
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with semidefinite programming
    • Lanckriet G.R.G., et al. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5 (2004) 27-72
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 27-72
    • Lanckriet, G.R.G.1
  • 71
    • 84890520049 scopus 로고    scopus 로고
    • Use of the zero-norm with linear models and kernel methods
    • Weston J., et al. Use of the zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 3 (2003) 1439-1461
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1439-1461
    • Weston, J.1
  • 74
    • 33845323028 scopus 로고    scopus 로고
    • A unifying view of Wiener and Volterra theory and polynomial kernel regression
    • Franz M.O., and Schölkopf B. A unifying view of Wiener and Volterra theory and polynomial kernel regression. Neural Comput. 18 (2006) 3097-3118
    • (2006) Neural Comput. , vol.18 , pp. 3097-3118
    • Franz, M.O.1    Schölkopf, B.2
  • 75
    • 69949107028 scopus 로고    scopus 로고
    • Haussler, D. (1999) Convolution kernels on discrete structures. UCSC-CRL-99-10, Department of Computer Science, University of California at Santa Cruz
    • Haussler, D. (1999) Convolution kernels on discrete structures. UCSC-CRL-99-10, Department of Computer Science, University of California at Santa Cruz
  • 76
    • 69949103920 scopus 로고    scopus 로고
    • Mathematics of the neural response
    • MIT, 2008-70
    • Smale, S. et al. (2008) Mathematics of the neural response. CSAIL Technical Report, MIT, 2008-70
    • (2008) CSAIL Technical Report
    • Smale, S.1
  • 77
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle O., et al. (Ed), MIT Press
    • In: Chapelle O., et al. (Ed). Semi-Supervised Learning (2006), MIT Press
    • (2006) Semi-Supervised Learning
  • 78
    • 36348995973 scopus 로고    scopus 로고
    • Humans perform semi-supervised classification too
    • Holte R.C., and Howe A. (Eds), AAAI Press
    • Zhu X., et al. Humans perform semi-supervised classification too. In: Holte R.C., and Howe A. (Eds). Twenty-Second AAAI Conference on Artificial Intelligence (2007), AAAI Press 864-870
    • (2007) Twenty-Second AAAI Conference on Artificial Intelligence , pp. 864-870
    • Zhu, X.1
  • 79
    • 64749109194 scopus 로고    scopus 로고
    • Semisupervised category learning: the impact of feedback in learning the information-integration task
    • Vandist K., et al. Semisupervised category learning: the impact of feedback in learning the information-integration task. Attent., Percept. Psychophys. 71 (2009) 328-341
    • (2009) Attent., Percept. Psychophys. , vol.71 , pp. 328-341
    • Vandist, K.1
  • 80
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • Becker S. (Ed), MIT Press
    • Andrews S., et al. Support vector machines for multiple-instance learning. In: Becker S. (Ed). Advances in Neural Information Processing Systems 15 (2003), MIT Press 561-568
    • (2003) Advances in Neural Information Processing Systems 15 , pp. 561-568
    • Andrews, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.