-
3
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G.E., et al. A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006) 1527-1554
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
-
6
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65 (1958) 386-408
-
(1958)
Psychol. Rev.
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
7
-
-
0003444646
-
-
Rumelhart D.E., and McClelland J.L. (Eds), MIT Press
-
In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel Distributed Processing (1986), MIT Press
-
(1986)
Parallel Distributed Processing
-
-
-
9
-
-
50849109367
-
Three case studies in the Bayesian analysis of cognitive models
-
Lee M.D. Three case studies in the Bayesian analysis of cognitive models. Psychon. Bull. Rev. 15 (2008) 1-15
-
(2008)
Psychon. Bull. Rev.
, vol.15
, pp. 1-15
-
-
Lee, M.D.1
-
10
-
-
33746263998
-
Probabilistic models of cognition: Conceptual foundations
-
Chater N., et al. Probabilistic models of cognition: Conceptual foundations. Trends Cogn. Sci. 10 (2006) 287-291
-
(2006)
Trends Cogn. Sci.
, vol.10
, pp. 287-291
-
-
Chater, N.1
-
11
-
-
36148995502
-
A tutorial on kernel methods for categorization
-
Jäkel F., et al. A tutorial on kernel methods for categorization. J. Math. Psychol. 51 (2007) 343-358
-
(2007)
J. Math. Psychol.
, vol.51
, pp. 343-358
-
-
Jäkel, F.1
-
12
-
-
51049096780
-
Kernel methods in machine learning
-
Hofmann T., et al. Kernel methods in machine learning. Ann. Stat. 36 (2008) 1171-1220
-
(2008)
Ann. Stat.
, vol.36
, pp. 1171-1220
-
-
Hofmann, T.1
-
14
-
-
0342973074
-
Context theory of classification learning
-
Medin D.L., and Schaffer M.M. Context theory of classification learning. Psychol. Rev. 85 (1978) 207-238
-
(1978)
Psychol. Rev.
, vol.85
, pp. 207-238
-
-
Medin, D.L.1
Schaffer, M.M.2
-
15
-
-
0022686961
-
Attention, similarity, and the identification-categorization relationship
-
Nosofsky R.M. Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. Gen. 115 (1986) 39-57
-
(1986)
J. Exp. Psychol. Gen.
, vol.115
, pp. 39-57
-
-
Nosofsky, R.M.1
-
17
-
-
69949092936
-
-
Minsky, M. and Papert, S. (1967) Linearly unrecognizable patterns. A. I. Memo No. 140, MIT
-
Minsky, M. and Papert, S. (1967) Linearly unrecognizable patterns. A. I. Memo No. 140, MIT
-
-
-
-
18
-
-
0026477904
-
ALCOVE: an exemplar-based connectionist model of category learning
-
Kruschke J.K. ALCOVE: an exemplar-based connectionist model of category learning. Psychol. Rev. 99 (1992) 22-44
-
(1992)
Psychol. Rev.
, vol.99
, pp. 22-44
-
-
Kruschke, J.K.1
-
19
-
-
0002623089
-
Exemplar-based approach to relating categorization, identification, and recognition
-
Ashby F.G. (Ed), Erlbaum
-
Nosofsky R.M. Exemplar-based approach to relating categorization, identification, and recognition. In: Ashby F.G. (Ed). Multidimensional Models of Perception and Cognition (1992), Erlbaum 363-393
-
(1992)
Multidimensional Models of Perception and Cognition
, pp. 363-393
-
-
Nosofsky, R.M.1
-
20
-
-
48049105122
-
Generalization and similarity in exemplar models of categorization: Insights from machine learning
-
Jäkel F., et al. Generalization and similarity in exemplar models of categorization: Insights from machine learning. Psychon. Bull. Rev. 15 (2008) 256-271
-
(2008)
Psychon. Bull. Rev.
, vol.15
, pp. 256-271
-
-
Jäkel, F.1
-
21
-
-
53849123303
-
Similarity, kernels and the triangle inequality
-
Jäkel F., et al. Similarity, kernels and the triangle inequality. J. Math. Psychol. 52 (2008) 297-303
-
(2008)
J. Math. Psychol.
, vol.52
, pp. 297-303
-
-
Jäkel, F.1
-
22
-
-
1942539715
-
SUSTAIN: a network model of category learning
-
Love B.C., et al. SUSTAIN: a network model of category learning. Psychol. Rev. 111 (2004) 309-332
-
(2004)
Psychol. Rev.
, vol.111
, pp. 309-332
-
-
Love, B.C.1
-
23
-
-
0025037991
-
A network that learns to recognize three-dimensional objects
-
Poggio T., and Edelman S. A network that learns to recognize three-dimensional objects. Nature 343 (1990) 263-266
-
(1990)
Nature
, vol.343
, pp. 263-266
-
-
Poggio, T.1
Edelman, S.2
-
24
-
-
0026536967
-
Psychophysical support for a two-dimensional view interpolation theory of object recognition
-
Bülthoff H.H., and Edelman S. Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc. Natl. Acad. Sci. USA 89 (1992) 60-64
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 60-64
-
-
Bülthoff, H.H.1
Edelman, S.2
-
25
-
-
69949104645
-
-
Poggio, T. and Girosi, F. (1989) A theory of networks for approximation and learning. A. I. Memo No. 1140, MIT
-
Poggio, T. and Girosi, F. (1989) A theory of networks for approximation and learning. A. I. Memo No. 1140, MIT
-
-
-
-
27
-
-
7244219792
-
Generalization in vision and motor control
-
Poggio T., and Bizzi E. Generalization in vision and motor control. Nature 431 (2004) 768-774
-
(2004)
Nature
, vol.431
, pp. 768-774
-
-
Poggio, T.1
Bizzi, E.2
-
28
-
-
0031746593
-
The development of features in object concepts
-
Schyns P.G., et al. The development of features in object concepts. Behav. Brain Sci. 21 (1998) 1-17
-
(1998)
Behav. Brain Sci.
, vol.21
, pp. 1-17
-
-
Schyns, P.G.1
-
29
-
-
84898959863
-
Machine learning applied to perception: decision-images for gender classification
-
Saul L.K., et al. (Ed), MIT Press
-
Wichmann F.A., et al. Machine learning applied to perception: decision-images for gender classification. In: Saul L.K., et al. (Ed). Advances in Neural Information Processing Systems 17 (2005), MIT Press 1489-1496
-
(2005)
Advances in Neural Information Processing Systems 17
, pp. 1489-1496
-
-
Wichmann, F.A.1
-
30
-
-
84864044921
-
A nonparametric approach to bottom-up visual saliency
-
Schölkopf B., et al. (Ed), MIT Press
-
Kienzle W., et al. A nonparametric approach to bottom-up visual saliency. In: Schölkopf B., et al. (Ed). Advances in Neural Information Processing Systems 19 (2007), MIT Press 689-696
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 689-696
-
-
Kienzle, W.1
-
31
-
-
69949100930
-
Center-surround patterns emerge as optimal predictors for human saccade targets
-
Kienzle, W. et al.. Center-surround patterns emerge as optimal predictors for human saccade targets. J. Vis., 9, 1-15
-
J. Vis
, vol.9
, pp. 1-15
-
-
Kienzle, W.1
-
32
-
-
41849148607
-
Plant classification from bat-like echolocation signals
-
doi:10.1371/journal.pcbi.1000032
-
Yovel Y., et al. Plant classification from bat-like echolocation signals. PLoS Comput. Biol (2008) doi:10.1371/journal.pcbi.1000032
-
(2008)
PLoS Comput. Biol
-
-
Yovel, Y.1
-
33
-
-
0034933214
-
Bubbles: a technique to reveal the use of information in recognition tasks
-
Gosselin F., and Schyns P.G. Bubbles: a technique to reveal the use of information in recognition tasks. Vis. Res 41 (2001) 2261-2271
-
(2001)
Vis. Res
, vol.41
, pp. 2261-2271
-
-
Gosselin, F.1
Schyns, P.G.2
-
34
-
-
60749108920
-
Uncovering gender discrimination cues in a realistic setting
-
Dupuis-Roy N., et al. Uncovering gender discrimination cues in a realistic setting. J. Vision 9 (2009) 1-8
-
(2009)
J. Vision
, vol.9
, pp. 1-8
-
-
Dupuis-Roy, N.1
-
35
-
-
0015080310
-
Stimulus features in signal detection
-
Ahumada A.J., and Lovell J. Stimulus features in signal detection. J. Acoust. Soc. Am. 49 (1971) 1751-1756
-
(1971)
J. Acoust. Soc. Am.
, vol.49
, pp. 1751-1756
-
-
Ahumada, A.J.1
Lovell, J.2
-
36
-
-
33646673084
-
Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer
-
Abbey C.K., and Eckstein M.P. Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer. J. Vision 6 (2006) 335-355
-
(2006)
J. Vision
, vol.6
, pp. 335-355
-
-
Abbey, C.K.1
Eckstein, M.P.2
-
38
-
-
33646033732
-
Receptive versus perceptive fields from the reverse-correlation viewpoint
-
Neri P., and Levi D.M. Receptive versus perceptive fields from the reverse-correlation viewpoint. Vision Res. 46 (2006) 2465-2474
-
(2006)
Vision Res.
, vol.46
, pp. 2465-2474
-
-
Neri, P.1
Levi, D.M.2
-
39
-
-
0001290509
-
From tools to theories: A heuristic of discovery in cognitive psychology
-
Gigerenzer G. From tools to theories: A heuristic of discovery in cognitive psychology. Psychol. Rev. 98 (1991) 254-267
-
(1991)
Psychol. Rev.
, vol.98
, pp. 254-267
-
-
Gigerenzer, G.1
-
40
-
-
4143105851
-
Computational approaches to the development of perceptual expertise
-
Palmeri T.J., et al. Computational approaches to the development of perceptual expertise. Trends Cogn. Sci. 8 (2004) 286-290
-
(2004)
Trends Cogn. Sci.
, vol.8
, pp. 286-290
-
-
Palmeri, T.J.1
-
42
-
-
0001290624
-
Categorization as probability density estimation
-
Ashby F.G., and Alfonso-Reese L.A. Categorization as probability density estimation. J. Math. Psychol. 39 (1995) 216-233
-
(1995)
J. Math. Psychol.
, vol.39
, pp. 216-233
-
-
Ashby, F.G.1
Alfonso-Reese, L.A.2
-
43
-
-
33645704714
-
The time course of perceptual categorization
-
Hahn U., and Ramscar M. (Eds), Oxford University Press
-
Palmeri T.J. The time course of perceptual categorization. In: Hahn U., and Ramscar M. (Eds). Similarity and Categorization (2001), Oxford University Press 193-224
-
(2001)
Similarity and Categorization
, pp. 193-224
-
-
Palmeri, T.J.1
-
45
-
-
0028541936
-
Models of the effects of prior knowledge on category learning
-
Heit E. Models of the effects of prior knowledge on category learning. J. Exp. Psychol. Learn. Mem. Cogn. 20 (1994) 1264-1282
-
(1994)
J. Exp. Psychol. Learn. Mem. Cogn.
, vol.20
, pp. 1264-1282
-
-
Heit, E.1
-
46
-
-
21844516524
-
Flexible tuning of similarity in exemplar-based categorization
-
Lamberts K. Flexible tuning of similarity in exemplar-based categorization. J. Exp. Psychol. Gen. 20 (1994) 1003-1021
-
(1994)
J. Exp. Psychol. Gen.
, vol.20
, pp. 1003-1021
-
-
Lamberts, K.1
-
47
-
-
0034280904
-
Exemplar-based accounts of "multiple-system" phenomena in perceptual categorization
-
Nosofsky R.M., and Johansen M.K. Exemplar-based accounts of "multiple-system" phenomena in perceptual categorization. Psychon. Bull. Rev. 7 (2000) 375-402
-
(2000)
Psychon. Bull. Rev.
, vol.7
, pp. 375-402
-
-
Nosofsky, R.M.1
Johansen, M.K.2
-
48
-
-
35348888561
-
Rules-plus-exception tasks: A problem for exemplar models?
-
Rodrigues P.M., and Murre J.M.J. Rules-plus-exception tasks: A problem for exemplar models?. Psychon. Bull. Rev. 14 (2007) 640-646
-
(2007)
Psychon. Bull. Rev.
, vol.14
, pp. 640-646
-
-
Rodrigues, P.M.1
Murre, J.M.J.2
-
49
-
-
0032114172
-
A neuropsychological theory of multiple systems in category learning
-
Ashby F.G., et al. A neuropsychological theory of multiple systems in category learning. Psychol. Rev. 105 (1998) 442-481
-
(1998)
Psychol. Rev.
, vol.105
, pp. 442-481
-
-
Ashby, F.G.1
-
51
-
-
50949127230
-
Rule-based extrapolation: A continuing challenge for exemplar models
-
Denton S.E., et al. Rule-based extrapolation: A continuing challenge for exemplar models. Psychon. Bull. Rev. 15 (2008) 780-786
-
(2008)
Psychon. Bull. Rev.
, vol.15
, pp. 780-786
-
-
Denton, S.E.1
-
52
-
-
0032335077
-
Prototypes in the mist: The early epochs of category learning
-
Smith J.D., and Minda J.P. Prototypes in the mist: The early epochs of category learning. J. Exp. Psychol. Learn. Mem. Cogn. 24 (1998) 1411-1436
-
(1998)
J. Exp. Psychol. Learn. Mem. Cogn.
, vol.24
, pp. 1411-1436
-
-
Smith, J.D.1
Minda, J.P.2
-
54
-
-
0036728612
-
Exemplar and prototype models revisited: response strategies, selective attention, and stimulus generalization
-
Nosofsky R.M., and Zaki S.R. Exemplar and prototype models revisited: response strategies, selective attention, and stimulus generalization. J. Exp. Psychol. Learn. Mem. Cogn. 28 (2002) 924-940
-
(2002)
J. Exp. Psychol. Learn. Mem. Cogn.
, vol.28
, pp. 924-940
-
-
Nosofsky, R.M.1
Zaki, S.R.2
-
55
-
-
33847655699
-
On the interaction between exemplar-based concepts and a response scaling process
-
Navarro D.J. On the interaction between exemplar-based concepts and a response scaling process. J. Math. Psychol. 51 (2007) 85-98
-
(2007)
J. Math. Psychol.
, vol.51
, pp. 85-98
-
-
Navarro, D.J.1
-
56
-
-
0031731695
-
Representation is representation of similarities
-
Edelman S. Representation is representation of similarities. Behav. Brain Sci. 21 (1998) 449-498
-
(1998)
Behav. Brain Sci.
, vol.21
, pp. 449-498
-
-
Edelman, S.1
-
57
-
-
0036252389
-
Mixture models of categorization
-
Rosseel Y. Mixture models of categorization. J. Math. Psychol. 46 (2002) 178-210
-
(2002)
J. Math. Psychol.
, vol.46
, pp. 178-210
-
-
Rosseel, Y.1
-
58
-
-
50949117247
-
In search of abstraction: the varying abstraction model of categorization
-
Vanpaemel W., and Storms G. In search of abstraction: the varying abstraction model of categorization. Psychon. Bull. Rev. 15 (2008) 732-749
-
(2008)
Psychon. Bull. Rev.
, vol.15
, pp. 732-749
-
-
Vanpaemel, W.1
Storms, G.2
-
59
-
-
66849111649
-
How many exemplars are used? Explorations with the Rex Leopold I model
-
De Schryver M., et al. How many exemplars are used? Explorations with the Rex Leopold I model. Psychon. Bull. Rev. 16 (2009) 337-343
-
(2009)
Psychon. Bull. Rev.
, vol.16
, pp. 337-343
-
-
De Schryver, M.1
-
60
-
-
0029294644
-
Shape representation in the inferior temporal cortex of monkeys
-
Logothetis N.K., et al. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5 (1995) 552-563
-
(1995)
Curr. Biol.
, vol.5
, pp. 552-563
-
-
Logothetis, N.K.1
-
61
-
-
0037122807
-
Visual categorization shapes feature selectivity in the primate temporal cortex
-
Sigala N., and Logothetis N.K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415 (2002) 318-320
-
(2002)
Nature
, vol.415
, pp. 318-320
-
-
Sigala, N.1
Logothetis, N.K.2
-
62
-
-
0035195699
-
Inferotemporal neurons represent low-dimensional configurations of parameterized shapes
-
Op de Beeck H., et al. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nat. Neurosci. 4 (2001) 1244-1252
-
(2001)
Nat. Neurosci.
, vol.4
, pp. 1244-1252
-
-
Op de Beeck, H.1
-
67
-
-
1842420581
-
General conditions for predictivity in learning theory
-
Poggio T., et al. General conditions for predictivity in learning theory. Nature 428 (2004) 419-422
-
(2004)
Nature
, vol.428
, pp. 419-422
-
-
Poggio, T.1
-
68
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
69
-
-
84899006163
-
On the complexity of learning the kernel matrix
-
Becker S. et al, eds, MIT Press
-
Bousquet O. and Herrmann D., (2003) On the complexity of learning the kernel matrix. In Advances in Neural Information Processing Systems 15 (Becker S. et al., eds), MIT Press, 415-422
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 415-422
-
-
Bousquet, O.1
Herrmann, D.2
-
70
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G.R.G., et al. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5 (2004) 27-72
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
-
71
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
Weston J., et al. Use of the zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 3 (2003) 1439-1461
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
-
74
-
-
33845323028
-
A unifying view of Wiener and Volterra theory and polynomial kernel regression
-
Franz M.O., and Schölkopf B. A unifying view of Wiener and Volterra theory and polynomial kernel regression. Neural Comput. 18 (2006) 3097-3118
-
(2006)
Neural Comput.
, vol.18
, pp. 3097-3118
-
-
Franz, M.O.1
Schölkopf, B.2
-
75
-
-
69949107028
-
-
Haussler, D. (1999) Convolution kernels on discrete structures. UCSC-CRL-99-10, Department of Computer Science, University of California at Santa Cruz
-
Haussler, D. (1999) Convolution kernels on discrete structures. UCSC-CRL-99-10, Department of Computer Science, University of California at Santa Cruz
-
-
-
-
76
-
-
69949103920
-
Mathematics of the neural response
-
MIT, 2008-70
-
Smale, S. et al. (2008) Mathematics of the neural response. CSAIL Technical Report, MIT, 2008-70
-
(2008)
CSAIL Technical Report
-
-
Smale, S.1
-
77
-
-
33749252873
-
-
Chapelle O., et al. (Ed), MIT Press
-
In: Chapelle O., et al. (Ed). Semi-Supervised Learning (2006), MIT Press
-
(2006)
Semi-Supervised Learning
-
-
-
78
-
-
36348995973
-
Humans perform semi-supervised classification too
-
Holte R.C., and Howe A. (Eds), AAAI Press
-
Zhu X., et al. Humans perform semi-supervised classification too. In: Holte R.C., and Howe A. (Eds). Twenty-Second AAAI Conference on Artificial Intelligence (2007), AAAI Press 864-870
-
(2007)
Twenty-Second AAAI Conference on Artificial Intelligence
, pp. 864-870
-
-
Zhu, X.1
-
79
-
-
64749109194
-
Semisupervised category learning: the impact of feedback in learning the information-integration task
-
Vandist K., et al. Semisupervised category learning: the impact of feedback in learning the information-integration task. Attent., Percept. Psychophys. 71 (2009) 328-341
-
(2009)
Attent., Percept. Psychophys.
, vol.71
, pp. 328-341
-
-
Vandist, K.1
-
80
-
-
84898946229
-
Support vector machines for multiple-instance learning
-
Becker S. (Ed), MIT Press
-
Andrews S., et al. Support vector machines for multiple-instance learning. In: Becker S. (Ed). Advances in Neural Information Processing Systems 15 (2003), MIT Press 561-568
-
(2003)
Advances in Neural Information Processing Systems 15
, pp. 561-568
-
-
Andrews, S.1
|