-
1
-
-
1642373967
-
Causal Explorer: A causal probabilistic network learning toolkit for biomedical discovery
-
C. F. Aliferis, I. Tsamardinos, A. Statnikov, and L. E. Brown. Causal Explorer: A causal probabilistic network learning toolkit for biomedical discovery. In Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, pages 371-376, 2003.
-
(2003)
Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences
, pp. 371-376
-
-
Aliferis, C.F.1
Tsamardinos, I.2
Statnikov, A.3
Brown, L.E.4
-
2
-
-
0002110602
-
MUNIN-an expert EMG assistant
-
John E. Desmedt, editor, chapter 21, Elsevier Science Publishers
-
S. Andreassen, F. V. Jensen, S. K. Andersen, B. Falck, U. Kjærulff, M. Woldbye, A. R. Sørensen, A. Rosenfalck, and F. Jensen. MUNIN-an expert EMG assistant. In John E. Desmedt, editor, Computer-Aided Electromyography and Expert Systems, chapter 21, pages 255-277. Elsevier Science Publishers, 1989.
-
(1989)
Computer-Aided Electromyography and Expert Systems
, pp. 255-277
-
-
Andreassen, S.1
Jensen, F.V.2
Andersen, S.K.3
Falck, B.4
Kjærulff, U.5
Woldbye, M.6
Sørensen, A.R.7
Rosenfalck, A.8
Jensen, F.9
-
3
-
-
0002460150
-
The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
-
I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In Proceedings of the Second European Conference on Artificial Intelligence in Medicine, pages 246-256, 1989.
-
(1989)
Proceedings of the Second European Conference on Artificial Intelligence in Medicine
, pp. 246-256
-
-
Beinlich, I.A.1
Suermondt, H.J.2
Chavez, R.M.3
Cooper, G.F.4
-
4
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden variables. Machine Learning, 29:213-244, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
8
-
-
1442305691
-
KDD cup 2001 report
-
J. Cheng, C. Hatzis, H. Hayashi, M. Krogel, S. Morishita, D. Page, and J. Sese. KDD cup 2001 report. ACM SIGKDD Explorations Newsletter, 3:47-64, 2002.
-
(2002)
ACM SIGKDD Explorations Newsletter
, vol.3
, pp. 47-64
-
-
Cheng, J.1
Hatzis, C.2
Hayashi, H.3
Krogel, M.4
Morishita, S.5
Page, D.6
Sese, J.7
-
9
-
-
0042967741
-
Optimal structure identification with greedy search
-
D.M. Chickering. Optimal structure identification with greedy search. Journal ofMachine Learning Research, 3:507-554, 2002.
-
(2002)
Journal ofMachine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
11
-
-
34249832377
-
Bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. A. Herskovits. Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.A.2
-
12
-
-
34948848213
-
Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models
-
R. G. Cowell. Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 91-97, 2001.
-
(2001)
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
, pp. 91-97
-
-
Cowell, R.G.1
-
16
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Dem̌sar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Dem̌sar, J.1
-
17
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10:1895-1923, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
18
-
-
0041995260
-
A simple algorithm to construct a consistent extension of a partially oriented graph
-
Technical Report R-185, Cognitive Systems Laboratory, UCLA Computer Science Department
-
D. Dor and M. Tarsi. A simple algorithm to construct a consistent extension of a partially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, UCLA Computer Science Department, 1992.
-
(1992)
-
-
Dor, D.1
Tarsi, M.2
-
19
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
M. Friedman. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11:86-92, 1940.
-
(1940)
Annals of Mathematical Statistics
, vol.11
, pp. 86-92
-
-
Friedman, M.1
-
23
-
-
0003846041
-
A tutorial on learning with Bayesian networks
-
Technical Report TR-95-06, Microsoft Research
-
D. Heckerman. A tutorial on learning with Bayesian networks. Technical Report TR-95-06, Microsoft Research, 1995.
-
(1995)
-
-
Heckerman, D.1
-
24
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
25
-
-
0012315692
-
A Bayesian approach to causal discovery
-
G. Glymour and G. Cooper, editors, AAAI Press
-
D. Heckerman, C.Meek, and G. F. Cooper. A Bayesian approach to causal discovery. In G. Glymour and G. Cooper, editors, Computation, Causation and Discovery, pages 141-165. AAAI Press, 1999.
-
(1999)
Computation, Causation and Discovery
, pp. 141-165
-
-
Heckerman, D.1
Meek, C.2
Cooper, G.F.3
-
28
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97:273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
30
-
-
0013155979
-
On supervised selection of Bayesian networks
-
P. Kontkanen, P. Myllymaki, T. Sliander, and H. Tirri. On supervised selection of Bayesian networks. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 334-342, 1999.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 334-342
-
-
Kontkanen, P.1
Myllymaki, P.2
Sliander, T.3
Tirri, H.4
-
31
-
-
0036250059
-
The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
-
K. Kristensen and I. A. Rasmussen. The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33:197-217, 2002.
-
(2002)
Computers and Electronics in Agriculture
, vol.33
, pp. 197-217
-
-
Kristensen, K.1
Rasmussen, I.A.2
-
33
-
-
33749434592
-
BNT structure learning package: Documentation and experiments
-
2645, Laboratoire PSI, Université et INSA de Rouen
-
P. Leray and O. François. BNT structure learning package: Documentation and experiments. Technical Report FRE CNRS 2645, Laboratoire PSI, Université et INSA de Rouen, 2004.
-
(2004)
Technical Report FRE CNRS
-
-
Leray, P.1
François, O.2
-
34
-
-
84958614477
-
Ascender II, a visual framework for 3D reconstruction
-
M. Marengoni, C. Jaynes, A. Hanson, and E. Riseman. Ascender II, a visual framework for 3D reconstruction. In Proceedings of the First International Conference on Computer Vision Systems, pages 469-488, 1999.
-
(1999)
Proceedings of the First International Conference on Computer Vision Systems
, pp. 469-488
-
-
Marengoni, M.1
Jaynes, C.2
Hanson, A.3
Riseman, E.4
-
37
-
-
1942452317
-
Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
-
A. Moore and W. Wong. Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In Twentieth International Conference on Machine Learning, pages 552-559, 2003.
-
(2003)
Twentieth International Conference on Machine Learning
, pp. 552-559
-
-
Moore, A.1
Wong, W.2
-
38
-
-
0003229133
-
The Bayes net toolbox for Matlab
-
K. Murphy. The Bayes net toolbox for Matlab. Computing Science and Statistics, 33:331-350, 2001.
-
(2001)
Computing Science and Statistics
, vol.33
, pp. 331-350
-
-
Murphy, K.1
-
43
-
-
21244467519
-
On discriminative Bayesian network classifiers and logistic regression
-
T. Roos, H. Wettig, P. Grunwald, P. Myllymaki, and H. Tirri. On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59:267-296, 2005.
-
(2005)
Machine Learning
, vol.59
, pp. 267-296
-
-
Roos, T.1
Wettig, H.2
Grunwald, P.3
Myllymaki, P.4
Tirri, H.5
-
44
-
-
0001173999
-
Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
-
M. Singh and M. Valtorta. Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning, 12:111-131, 1995.
-
(1995)
International Journal of Approximate Reasoning
, vol.12
, pp. 111-131
-
-
Singh, M.1
Valtorta, M.2
-
47
-
-
0003614273
-
-
MIT Press, 2nd edition
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. MIT Press, 2nd edition, 2000.
-
(2000)
Causation, Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
48
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65:31-78, 2006a.
-
(2006)
Machine Learning
, vol.65
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|