메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 1527-1570

Bayesian network structure learning by recursive autonomy identification

Author keywords

Bayesian networks; Constraint based structure learning

Indexed keywords

BAYESIAN NETWORK STRUCTURE; CLASSIFICATION ACCURACY; CONDITIONAL INDEPENDENCES; CONSTRAINT-BASED; CONSTRAINT-BASED STRUCTURE LEARNING; DEPENDENCY ANALYSIS; EDGE DIRECTION; GREEDY SEARCH; HIGH ORDER; HILL CLIMBING ALGORITHMS; MAX-MIN; RUNTIMES; SEQUENTIAL APPLICATIONS; STRUCTURE DECOMPOSITION; SUB-STRUCTURES; SYNTHETIC PROBLEM; THREE PHASE; UNDIRECTED GRAPH;

EID: 68949163877     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (60)

References (52)
  • 4
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden variables. Machine Learning, 29:213-244, 1997.
    • (1997) Machine Learning , vol.29 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 9
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D.M. Chickering. Optimal structure identification with greedy search. Journal ofMachine Learning Research, 3:507-554, 2002.
    • (2002) Journal ofMachine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 11
    • 34249832377 scopus 로고
    • Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. A. Herskovits. Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.A.2
  • 12
    • 34948848213 scopus 로고    scopus 로고
    • Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models
    • R. G. Cowell. Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 91-97, 2001.
    • (2001) Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence , pp. 91-97
    • Cowell, R.G.1
  • 16
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Dem̌sar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Dem̌sar, J.1
  • 17
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10:1895-1923, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 18
    • 0041995260 scopus 로고
    • A simple algorithm to construct a consistent extension of a partially oriented graph
    • Technical Report R-185, Cognitive Systems Laboratory, UCLA Computer Science Department
    • D. Dor and M. Tarsi. A simple algorithm to construct a consistent extension of a partially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, UCLA Computer Science Department, 1992.
    • (1992)
    • Dor, D.1    Tarsi, M.2
  • 19
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11:86-92, 1940.
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 23
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Technical Report TR-95-06, Microsoft Research
    • D. Heckerman. A tutorial on learning with Bayesian networks. Technical Report TR-95-06, Microsoft Research, 1995.
    • (1995)
    • Heckerman, D.1
  • 24
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 25
    • 0012315692 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • G. Glymour and G. Cooper, editors, AAAI Press
    • D. Heckerman, C.Meek, and G. F. Cooper. A Bayesian approach to causal discovery. In G. Glymour and G. Cooper, editors, Computation, Causation and Discovery, pages 141-165. AAAI Press, 1999.
    • (1999) Computation, Causation and Discovery , pp. 141-165
    • Heckerman, D.1    Meek, C.2    Cooper, G.F.3
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97:273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 31
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
    • K. Kristensen and I. A. Rasmussen. The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33:197-217, 2002.
    • (2002) Computers and Electronics in Agriculture , vol.33 , pp. 197-217
    • Kristensen, K.1    Rasmussen, I.A.2
  • 33
    • 33749434592 scopus 로고    scopus 로고
    • BNT structure learning package: Documentation and experiments
    • 2645, Laboratoire PSI, Université et INSA de Rouen
    • P. Leray and O. François. BNT structure learning package: Documentation and experiments. Technical Report FRE CNRS 2645, Laboratoire PSI, Université et INSA de Rouen, 2004.
    • (2004) Technical Report FRE CNRS
    • Leray, P.1    François, O.2
  • 37
    • 1942452317 scopus 로고    scopus 로고
    • Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
    • A. Moore and W. Wong. Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In Twentieth International Conference on Machine Learning, pages 552-559, 2003.
    • (2003) Twentieth International Conference on Machine Learning , pp. 552-559
    • Moore, A.1    Wong, W.2
  • 38
  • 43
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • T. Roos, H. Wettig, P. Grunwald, P. Myllymaki, and H. Tirri. On discriminative Bayesian network classifiers and logistic regression. Machine Learning, 59:267-296, 2005.
    • (2005) Machine Learning , vol.59 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grunwald, P.3    Myllymaki, P.4    Tirri, H.5
  • 44
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
    • M. Singh and M. Valtorta. Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning, 12:111-131, 1995.
    • (1995) International Journal of Approximate Reasoning , vol.12 , pp. 111-131
    • Singh, M.1    Valtorta, M.2
  • 48
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65:31-78, 2006a.
    • (2006) Machine Learning , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.