메뉴 건너뛰기




Volumn 76, Issue 1, 2009, Pages 176-183

Predicting residue-residue contact maps by a two-layer, integrated neural-network method

Author keywords

Artificial neural networks; Contact map prediction; Protein structure prediction

Indexed keywords

SOLVENT;

EID: 66249107719     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.22329     Document Type: Article
Times cited : (41)

References (37)
  • 2
    • 0030627407 scopus 로고    scopus 로고
    • Recovery of protein structure from contact maps
    • Vendruscolo M, Kussell E, Domany E. Recovery of protein structure from contact maps. Fold Design 1997;2:295-306. (Pubitemid 127740552)
    • (1997) Folding and Design , vol.2 , Issue.5 , pp. 295-306
    • Vendruscolo, M.1    Kussell, E.2    Domany, E.3
  • 3
    • 0036073603 scopus 로고    scopus 로고
    • Contact order and ab initio protein structure prediction
    • Bonneau R, Ruczinski I, Tsai J, Baker D. Contact order and ab initio protein structure prediction. Protein Sci 2002;11:1937-1944.
    • (2002) Protein Sci , vol.11 , pp. 1937-1944
    • Bonneau, R.1    Ruczinski, I.2    Tsai, J.3    Baker, D.4
  • 5
    • 0030627941 scopus 로고    scopus 로고
    • Improving contact predictions by the combination of correlated mutations and other sources of sequence information
    • Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Design 1997;2:s25-s32. (Pubitemid 127740476)
    • (1997) Folding and Design , vol.2 , Issue.3
    • Olmea, O.1    Valencia, A.2
  • 7
    • 33646766064 scopus 로고    scopus 로고
    • Correlated mutations: Advances and limitations. a study on fusion proteins and on the cohesion-dockerin families
    • Halperin I, Wolfson HJ, Nussinov R. Correlated mutations: advances and limitations. A study on fusion proteins and on the cohesion-dockerin families. Proteins 2006;63:832-845.
    • (2006) Proteins , vol.63 , pp. 832-845
    • Halperin, I.1    Wolfson, H.J.2    Nussinov, R.3
  • 8
    • 33751219893 scopus 로고    scopus 로고
    • Predicting residue contacts using pragmatic correlated mutations method: Reducing the false positives
    • Kundrotas PJ, Alexov EG. Predicting residue contacts using pragmatic correlated mutations method: reducing the false positives. BMC Bioinformatics 2006;7:503.
    • (2006) BMC Bioinformatics , vol.7 , pp. 503
    • Kundrotas, P.J.1    Alexov, E.G.2
  • 9
    • 0033047710 scopus 로고    scopus 로고
    • A neural network based predictor of residue contacts in proteins
    • Fariselli P, Casadio R. A neural network based predictor of residue contacts in proteins. Prot Eng 1999;12:15-21. (Pubitemid 29050537)
    • (1999) Protein Engineering , vol.12 , Issue.1 , pp. 15-21
    • Fariselli, P.1    Casadio, R.2
  • 10
    • 0035700864 scopus 로고    scopus 로고
    • Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations
    • DOI 10.1002/prot.1173
    • Fariselli P, Olmea O, Valencia A, Casadio R. Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations. Proteins 2001;(Suppl 5):157-162. (Pubitemid 34113179)
    • (2001) Proteins: Structure, Function and Genetics , vol.45 , Issue.SUPPL. 5 , pp. 157-162
    • Fariselli, P.1    Olmea, O.2    Valencia, A.3    Casadio, R.4
  • 11
    • 0035237804 scopus 로고    scopus 로고
    • Improved prediction of the number of residue contacts in proteins by recurrent neural networks
    • Pollastri G, Baldi P, Fariselli P, Casadio R. Improved prediction of the number of residue contacts in proteins by recurrent neural networks. 4Bioinformatics 2001;17:s234-s242. (Pubitemid 33793515)
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 12
    • 0041719954 scopus 로고    scopus 로고
    • Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners
    • Pollastri G, Baldi P. Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners. Bioinformatics 2002;18:s62-s70. (Pubitemid 41185638)
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Pollastri, G.1    Baldi, P.2
  • 13
    • 22144489879 scopus 로고    scopus 로고
    • Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme
    • DOI 10.1007/s10822-005-0578-7
    • Zhang G, Huang DS. Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme. J Comput-Aided Mol Des 2004;18:797-810. (Pubitemid 40973868)
    • (2004) Journal of Computer-Aided Molecular Design , vol.18 , Issue.12 , pp. 797-810
    • Zhang, G.-Z.1    Huang, D.-S.2
  • 14
    • 21444454088 scopus 로고    scopus 로고
    • PROFcon: Novel prediction of long-range contacts
    • DOI 10.1093/bioinformatics/bti454
    • Punta M, Rost B. PROFcon: novel prediction of long-range contacts. Bioinformatics 2005;21:2960-2968. (Pubitemid 40916420)
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 2960-2968
    • Punta, M.1    Rost, B.2
  • 15
    • 33745610096 scopus 로고    scopus 로고
    • A two-stage approach from improved prediction of residue contact maps
    • Vullo IA, Walsh , Pollastri G. A two-stage approach from improved prediction of residue contact maps. BMC Bioinformatics 2006;7:180.
    • (2006) BMC Bioinformatics , vol.7 , pp. 180
    • Vullo, I.A.1    Walsh2    Pollastri, G.3
  • 17
    • 34247247779 scopus 로고    scopus 로고
    • Improved residue contact prediction using support vector machines and a large feature set
    • DOI 10.1186/1471-2105-8-113
    • Cheng J, Baldi P. Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 2007;8:113. (Pubitemid 46605894)
    • (2007) BMC Bioinformatics , vol.8 , pp. 113
    • Cheng, J.1    Baldi, P.2
  • 18
    • 0042721397 scopus 로고    scopus 로고
    • Predicting Interresidue Contacts Using Templates and Pathways
    • DOI 10.1002/prot.10539
    • Shao Y, Bystroff C. Predicting interresidue contacts using templates and pathways. Proteins 2003;53:497-502. (Pubitemid 37352209)
    • (2003) Proteins: Structure, Function and Genetics , vol.53 , Issue.SUPPL. 6 , pp. 497-502
    • Shao, Y.1    Bystroff, C.2
  • 19
    • 24744453057 scopus 로고    scopus 로고
    • Striped sheets and protein contact prediction
    • Maccallum RM. Striped sheets and protein contact prediction. Bioinformatics 2004;20:224-231.
    • (2004) Bioinformatics , vol.20 , pp. 224-231
    • Maccallum, R.M.1
  • 20
    • 16344377463 scopus 로고    scopus 로고
    • Evolution and similarity evaluation of protein structures in contact map space
    • DOI 10.1002/prot.20415
    • Gupta NN, Mangal, Biswas S. Evolution and similarity evaluation of protein structures in contact map space. Proteins 2005;59:196-204. (Pubitemid 40471559)
    • (2005) Proteins: Structure, Function and Genetics , vol.59 , Issue.2 , pp. 196-204
    • Gupta, N.1    Mangal, N.2    Biswas, S.3
  • 22
    • 47049101751 scopus 로고    scopus 로고
    • Using inferred residue contacts to distinguish between correct and incorrect protein models
    • Miller C, Eisenberg D. Using inferred residue contacts to distinguish between correct and incorrect protein models. Bioinformatics 2008;24:1575-1582.
    • (2008) Bioinformatics , vol.24 , pp. 1575-1582
    • Miller, C.1    Eisenberg, D.2
  • 23
    • 0041843696 scopus 로고    scopus 로고
    • TOUCHSTONE II: A new approach to ab initio protein structure prediction
    • Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003;85:1145-1164. (Pubitemid 36909676)
    • (2003) Biophysical Journal , vol.85 , Issue.2 , pp. 1145-1164
    • Zhang, Y.1    Kolinski, A.2    Skolnick, J.3
  • 24
    • 33847073796 scopus 로고    scopus 로고
    • Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training
    • DOI 10.1002/prot.21298
    • Dor O, Zhou Y. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training. Proteins 2007;66:838-845. (Pubitemid 46273069)
    • (2007) Proteins: Structure, Function and Genetics , vol.66 , Issue.4 , pp. 838-845
    • Dor, O.1    Zhou, Y.2
  • 25
    • 34249914807 scopus 로고    scopus 로고
    • Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties
    • DOI 10.1002/prot.21408
    • Dor O, Zhou Y. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Proteins 2007;68:76-81. (Pubitemid 46871583)
    • (2007) Proteins: Structure, Function and Genetics , vol.68 , Issue.1 , pp. 76-81
    • Dor, O.1    Zhou, Y.2
  • 26
    • 61449123967 scopus 로고    scopus 로고
    • Improving the accuracy of predicting real-value backbone torsion angles and residue solvent accessibility by guided learning through two-layer neural networks
    • in press. (Published Online: Aug 14 2008, 1:54PM; DOI: 10.1002/prot.22193)
    • Faraggi E, Xue B, Zhou Y. Improving the accuracy of predicting real-value backbone torsion angles and residue solvent accessibility by guided learning through two-layer neural networks. Proteins, in press. (Published Online: Aug 14 2008, 1:54PM; DOI: 10.1002/prot.22193)
    • Proteins
    • Faraggi, E.1    Xue, B.2    Zhou, Y.3
  • 27
    • 44949201613 scopus 로고    scopus 로고
    • Real-value prediction of backbone torsion angles
    • Xue B, Dor O, Faraggi E, Zhou Y. Real-value prediction of backbone torsion angles. Proteins 2008;72:427-433.
    • (2008) Proteins , vol.72 , pp. 427-433
    • Xue, B.1    Dor, O.2    Faraggi, E.3    Zhou, Y.4
  • 28
    • 21844524655 scopus 로고
    • Introduction to artificial neural network (ANN) methods: What they are and how to use them
    • Zupan J. Introduction to artificial neural network (ANN) methods: what they are and how to use them. Acta Chim Slovenica 1994;41:327-352.
    • (1994) Acta Chim Slovenica , vol.41 , pp. 327-352
    • Zupan, J.1
  • 30
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 31
    • 0029901640 scopus 로고    scopus 로고
    • Analysis of compositionally biased regions in sequence databases
    • DOI 10.1016/S0076-6879(96)66035-2
    • Wootton J, Federhen S. Analysis of compositionally biased regions in sequence databases. Meth Enzymol 1996;266:554-571. (Pubitemid 26165889)
    • (1996) Methods in Enzymology , vol.266 , pp. 554-571
    • Wootton, J.C.1    Federhen, S.2
  • 32
    • 2942694535 scopus 로고    scopus 로고
    • The dependence of all-atom statistical potentials on structural training database
    • DOI 10.1529/biophysj.103.035998
    • Zhang C, Liu S, Zhou H, Zhou Y. The dependence of all-atom statistical potentials on training structural database. Biophys J 2004;86:3349-3358. (Pubitemid 38780222)
    • (2004) Biophysical Journal , vol.86 , Issue.6 , pp. 3349-3358
    • Zhang, C.1    Liu, S.2    Zhou, H.3    Zhou, Y.4
  • 33
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • Riis S, Kroph A. Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J Comput Biol 1996;3:163-183. (Pubitemid 26182766)
    • (1996) Journal of Computational Biology , vol.3 , Issue.1 , pp. 163-183
    • Krogh, A.1
  • 34
    • 17844363963 scopus 로고    scopus 로고
    • PPRODO: Prediction of protein domain boundaries using neural networks
    • DOI 10.1002/prot.20442
    • Sim J, Kim S, Lee J. Pprodo: prediction of protein domain boundaries using neural networks. Proteins 2005;59:627-632. (Pubitemid 40594305)
    • (2005) Proteins: Structure, Function and Genetics , vol.59 , Issue.3 , pp. 627-632
    • Sim, J.1    Kim, S.-Y.2    Lee, J.3
  • 35
    • 84860164860 scopus 로고    scopus 로고
    • Available at: Accessed July 20, 2008
    • GraphPad Software. Available at: http://www.graphpad.com/quickcalcs/ ttest1.cfm. Accessed July 20, 2008.
  • 36
    • 84860507958 scopus 로고    scopus 로고
    • Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms
    • DOI 10.1093/bioinformatics/bti1004
    • Cheng J, Baldi P. Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms. Bioinformatics 2005;21(Suppl):i75-i84. (Pubitemid 41794477)
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Cheng, J.1    Baldi, P.2
  • 37
    • 36749031067 scopus 로고    scopus 로고
    • Contact prediction using mutual information and neural nets
    • DOI 10.1002/prot.21791
    • Shackleford G, Karplus K. Contact prediction using mutual information and neural nets. Proteins 2007;69(S8):159-164. (Pubitemid 350210123)
    • (2007) Proteins: Structure, Function and Genetics , vol.69 , Issue.SUPPL. 8 , pp. 159-164
    • Shackelford, G.1    Karplus, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.