-
3
-
-
0026992322
-
An analysis of Bayesian classifiers
-
Menlo Park, CA
-
Langley, P., Iba, W., and Thompson, K. An analysis of Bayesian classifiers. In Proceedings of the 10th National Conference on Artificial Intelligence (AAAI'92), Menlo Park, CA, 1992, pp. 223-228.
-
(1992)
Proceedings of the 10th National Conference on Artificial Intelligence (AAAI'92)
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
4
-
-
34249093069
-
A naive-Bayes classifier for damage detection in engineering materials
-
Addin, O., Sapuan, S. M., Mahdi, E., and Othman, M. A naive-Bayes classifier for damage detection in engineering materials. Mater. Des., 2007, 28, 2379-2386.
-
(2007)
Mater. Des
, vol.28
, pp. 2379-2386
-
-
Addin, O.1
Sapuan, S.M.2
Mahdi, E.3
Othman, M.4
-
5
-
-
17844369454
-
Modeling of manufacturing processes by learning systems: The naïve Bayesian classifier versus artificial neural networks
-
Perzyk, M., Biernacki, R., and Kochahski A. Modeling of manufacturing processes by learning systems: the naïve Bayesian classifier versus artificial neural networks. J. Mater. Process. Technol., 2005, 164-165, 1430-1435.
-
(2005)
J. Mater. Process. Technol
, vol.164-165
, pp. 1430-1435
-
-
Perzyk, M.1
Biernacki, R.2
Kochahski, A.3
-
6
-
-
63149086197
-
Comparing soft computing methods in prediction of manufacturing data
-
Koskimäki, E., Göös, J., Kontkanen, P., Myllymäki, P., and Tirri, H. Comparing soft computing methods in prediction of manufacturing data. Lect. Notes Comput. Sci., 1998, 1416, 775-784.
-
(1998)
Lect. Notes Comput. Sci
, vol.1416
, pp. 775-784
-
-
Koskimäki, E.1
Göös, J.2
Kontkanen, P.3
Myllymäki, P.4
Tirri, H.5
-
7
-
-
23044534455
-
Bayesian classification for inspection of industrial products
-
Radeva, P., Bressan, M., Tovar, A., and Vitrià, J. Bayesian classification for inspection of industrial products. Lect. Notes Comput. Sci., 2002, 2504, 399-407.
-
(2002)
Lect. Notes Comput. Sci
, vol.2504
, pp. 399-407
-
-
Radeva, P.1
Bressan, M.2
Tovar, A.3
Vitrià, J.4
-
8
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian network classifiers. Mach. Learn., 1997, 29(2/3), 131-163.
-
(1997)
Mach. Learn
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
9
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C. K. and Liu, C. N. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory, 1968, IT-14, 462-467.
-
(1968)
IEEE Trans. Inform. Theory
, vol.IT-14
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
10
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
Cooper, G. F. The computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell., 1990, 42, 393-405.
-
(1990)
Artif Intell
, vol.42
, pp. 393-405
-
-
Cooper, G.F.1
-
11
-
-
0028482006
-
Learning Bayesian belief networks. An approach based on the MDL principle
-
Lam, W. and Bacchus, F. Learning Bayesian belief networks. An approach based on the MDL principle. Comput. Intell., 1994, 10, 269-293.
-
(1994)
Comput. Intell
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
12
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen, J. Modeling by shortest data description. Automatica, 1978, 14, 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
13
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
Eds. D. Fisher and A. Lenz, Springer-Verlag, NewYork
-
Chickering, D. M. Learning Bayesian networks is NP-complete. Learning from data (Eds. D. Fisher and A. Lenz), 1996 pp. 121-130 (Springer-Verlag, NewYork).
-
(1996)
Learning from data
, pp. 121-130
-
-
Chickering, D.M.1
-
14
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F. and Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn., 1992, 9, 309-347.
-
(1992)
Mach. Learn
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
15
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., and Chickering, D. M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn., 1995, 20(3), 197-243.
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
16
-
-
63149167486
-
-
Neapolitan, R. E. Learning Bayesian networks, 2004 (Pearson Prentice Hall, Upper Saddle River, New Jersey).
-
Neapolitan, R. E. Learning Bayesian networks, 2004 (Pearson Prentice Hall, Upper Saddle River, New Jersey).
-
-
-
-
17
-
-
0003846041
-
A tutorial on learning with Bayesian networks
-
Technical report MSR-TR-95-06, Microsoft Research
-
Heckerman, D. A tutorial on learning with Bayesian networks. Technical report MSR-TR-95-06, Microsoft Research, 1995.
-
(1995)
-
-
Heckerman, D.1
-
18
-
-
21244433569
-
TAN classifiers based on decomposable distributions
-
Cerquides, J. and Lopez de Mantaras, R. TAN classifiers based on decomposable distributions. Mach. Learn., 2005, 59, 323-354.
-
(2005)
Mach. Learn
, vol.59
, pp. 323-354
-
-
Cerquides, J.1
Lopez de Mantaras, R.2
-
19
-
-
63149186343
-
-
Meilǎ, M. and Jaakkola, T. Tractable Bayesian learning of tree belief networks. In Proceedings of the 16th Conference on Uncertainty in artificial intelligence, 2000, pp. 380-388 (Morgan Kaufmann, San Francisco).
-
Meilǎ, M. and Jaakkola, T. Tractable Bayesian learning of tree belief networks. In Proceedings of the 16th Conference on Uncertainty in artificial intelligence, 2000, pp. 380-388 (Morgan Kaufmann, San Francisco).
-
-
-
-
20
-
-
21244467165
-
Learning Bayesian network classifiers: Search in a space of partially directed acyclic graphs
-
Acid, S., de Campos, L. M., and Castellano, J. G. Learning Bayesian network classifiers: search in a space of partially directed acyclic graphs. Mach. Learn., 2005, 59, 213-235.
-
(2005)
Mach. Learn
, vol.59
, pp. 213-235
-
-
Acid, S.1
de Campos, L.M.2
Castellano, J.G.3
-
24
-
-
14344256569
-
-
Grossman, D. and Domingos, P. Learning Bayesian network classifiers by maximizing conditional likelihood. In Proceedings of the 21st International Conference on Machine learning, Banff, Canada, 2004, pp. 361-368 (ACM, NewYork).
-
Grossman, D. and Domingos, P. Learning Bayesian network classifiers by maximizing conditional likelihood. In Proceedings of the 21st International Conference on Machine learning, Banff, Canada, 2004, pp. 361-368 (ACM, NewYork).
-
-
-
-
25
-
-
21244461917
-
Learning the structure of augmented Bayesian classifiers
-
Keogh, E. and Pazzani, M. J. Learning the structure of augmented Bayesian classifiers. Int. J. Artif. Intell. Tools, 2002, 11(4), 587-601.
-
(2002)
Int. J. Artif. Intell. Tools
, vol.11
, Issue.4
, pp. 587-601
-
-
Keogh, E.1
Pazzani, M.J.2
-
26
-
-
29144477220
-
Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
-
Hwang, K. and Zhang, B. Bayesian model averaging of Bayesian network classifiers over multiple node-orders: application to sparse datasets. IEEE Trans. Syst. Man Cybern. B, Cybern., 2005, 35(6), 1302-1310.
-
(2005)
IEEE Trans. Syst. Man Cybern. B, Cybern
, vol.35
, Issue.6
, pp. 1302-1310
-
-
Hwang, K.1
Zhang, B.2
-
27
-
-
31844453166
-
Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes
-
Bonn, Germany
-
Jing, Y., Pavlovic, V., and Rehg, J. M. Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 2005, pp. 369-376.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning
, pp. 369-376
-
-
Jing, Y.1
Pavlovic, V.2
Rehg, J.M.3
-
28
-
-
37649000687
-
A new algorithm for learning Bayesian classifiers from data
-
Banff, Canada, July
-
Kleiner, A. and Sharp, B. A new algorithm for learning Bayesian classifiers from data. In Proceedings of the 3rd IASTED International Conference on Artificial Intelligence and Soft Computing (ASC2000), Banff, Canada, July 2000, pp. 191-197.
-
(2000)
Proceedings of the 3rd IASTED International Conference on Artificial Intelligence and Soft Computing (ASC2000)
, pp. 191-197
-
-
Kleiner, A.1
Sharp, B.2
-
29
-
-
70350674995
-
On the shortest spanning subtree of a graph and the traveling salesman problem
-
Kruskal, Jr., J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc., 1956, 7, 48-50.
-
(1956)
Proc. Am. Math. Soc
, vol.7
, pp. 48-50
-
-
Kruskal Jr., J.B.1
-
30
-
-
84950934893
-
Bayes factors
-
Kass, R. E. and Raftery, A. E. Bayes factors. J. Am. Stat. Assoc., 1995, 90(430), 773-795.
-
(1995)
J. Am. Stat. Assoc
, vol.90
, Issue.430
, pp. 773-795
-
-
Kass, R.E.1
Raftery, A.E.2
-
32
-
-
84915005479
-
Probability of error, equivocation, and the Chernoff bound
-
Hellman, M. E. and Raviv, J. Probability of error, equivocation, and the Chernoff bound. IEEE Trans. Inform. Theory, 1970, IT-16, 368-372.
-
(1970)
IEEE Trans. Inform. Theory
, vol.IT-16
, pp. 368-372
-
-
Hellman, M.E.1
Raviv, J.2
-
34
-
-
0031381525
-
Wrappers for feature subset selection
-
John, G. and Kohavi, R. Wrappers for feature subset selection. Artif. Intell., 1997, 97, 273-324.
-
(1997)
Artif. Intell
, vol.97
, pp. 273-324
-
-
John, G.1
Kohavi, R.2
-
35
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
Morgan Kaufmann, San Francisco
-
Fayyad, U. M. and Irani, K. B. Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Francisco, 1993, pp. 1022-1027.
-
(1993)
Proceedings of the 13th International Joint Conference on Artificial Intelligence
, pp. 1022-1027
-
-
Fayyad, U.M.1
Irani, K.B.2
-
37
-
-
0000974044
-
Control chart pattern recognition using neural networks
-
Pham, D. T. and Oztemel, E. Control chart pattern recognition using neural networks. J. Syst. Eng., 1992, 2, 256-262.
-
(1992)
J. Syst. Eng
, vol.2
, pp. 256-262
-
-
Pham, D.T.1
Oztemel, E.2
-
38
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Morgan Kaufmann, San Francisco
-
Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Francisco, 1995, pp. 1137-1143.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
-
40
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
41
-
-
63149111562
-
-
Data Mining Tools See5 and C5.0. Available from http://rulequest.com/ see5-info.html.
-
Data Mining Tools See5 and C5.0. Available from http://rulequest.com/ see5-info.html.
-
-
-
|