메뉴 건너뛰기




Volumn 223, Issue 3, 2009, Pages 743-756

Building Bayesian network classifiers through a Bayesian complexity monitoring system

Author keywords

Bayes factor; Bayesian networks; Classification; Naive bayes; Tree augmented naive bayes classifier

Indexed keywords

BENCHMARKING; CLASSIFIERS; DISTRIBUTED PARAMETER NETWORKS; INDUSTRIAL APPLICATIONS; INFERENCE ENGINES; INTELLIGENT NETWORKS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; SPEECH ANALYSIS; SPEECH RECOGNITION;

EID: 63149167438     PISSN: 09544062     EISSN: None     Source Type: Journal    
DOI: 10.1243/09544062JMES1243     Document Type: Article
Times cited : (15)

References (42)
  • 4
    • 34249093069 scopus 로고    scopus 로고
    • A naive-Bayes classifier for damage detection in engineering materials
    • Addin, O., Sapuan, S. M., Mahdi, E., and Othman, M. A naive-Bayes classifier for damage detection in engineering materials. Mater. Des., 2007, 28, 2379-2386.
    • (2007) Mater. Des , vol.28 , pp. 2379-2386
    • Addin, O.1    Sapuan, S.M.2    Mahdi, E.3    Othman, M.4
  • 5
    • 17844369454 scopus 로고    scopus 로고
    • Modeling of manufacturing processes by learning systems: The naïve Bayesian classifier versus artificial neural networks
    • Perzyk, M., Biernacki, R., and Kochahski A. Modeling of manufacturing processes by learning systems: the naïve Bayesian classifier versus artificial neural networks. J. Mater. Process. Technol., 2005, 164-165, 1430-1435.
    • (2005) J. Mater. Process. Technol , vol.164-165 , pp. 1430-1435
    • Perzyk, M.1    Biernacki, R.2    Kochahski, A.3
  • 7
    • 23044534455 scopus 로고    scopus 로고
    • Bayesian classification for inspection of industrial products
    • Radeva, P., Bressan, M., Tovar, A., and Vitrià, J. Bayesian classification for inspection of industrial products. Lect. Notes Comput. Sci., 2002, 2504, 399-407.
    • (2002) Lect. Notes Comput. Sci , vol.2504 , pp. 399-407
    • Radeva, P.1    Bressan, M.2    Tovar, A.3    Vitrià, J.4
  • 8
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian network classifiers. Mach. Learn., 1997, 29(2/3), 131-163.
    • (1997) Mach. Learn , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 9
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C. K. and Liu, C. N. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory, 1968, IT-14, 462-467.
    • (1968) IEEE Trans. Inform. Theory , vol.IT-14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 10
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper, G. F. The computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell., 1990, 42, 393-405.
    • (1990) Artif Intell , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 11
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks. An approach based on the MDL principle
    • Lam, W. and Bacchus, F. Learning Bayesian belief networks. An approach based on the MDL principle. Comput. Intell., 1994, 10, 269-293.
    • (1994) Comput. Intell , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 12
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. Modeling by shortest data description. Automatica, 1978, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 13
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Eds. D. Fisher and A. Lenz, Springer-Verlag, NewYork
    • Chickering, D. M. Learning Bayesian networks is NP-complete. Learning from data (Eds. D. Fisher and A. Lenz), 1996 pp. 121-130 (Springer-Verlag, NewYork).
    • (1996) Learning from data , pp. 121-130
    • Chickering, D.M.1
  • 14
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F. and Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn., 1992, 9, 309-347.
    • (1992) Mach. Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 15
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., and Chickering, D. M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn., 1995, 20(3), 197-243.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 16
    • 63149167486 scopus 로고    scopus 로고
    • Neapolitan, R. E. Learning Bayesian networks, 2004 (Pearson Prentice Hall, Upper Saddle River, New Jersey).
    • Neapolitan, R. E. Learning Bayesian networks, 2004 (Pearson Prentice Hall, Upper Saddle River, New Jersey).
  • 17
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Technical report MSR-TR-95-06, Microsoft Research
    • Heckerman, D. A tutorial on learning with Bayesian networks. Technical report MSR-TR-95-06, Microsoft Research, 1995.
    • (1995)
    • Heckerman, D.1
  • 18
    • 21244433569 scopus 로고    scopus 로고
    • TAN classifiers based on decomposable distributions
    • Cerquides, J. and Lopez de Mantaras, R. TAN classifiers based on decomposable distributions. Mach. Learn., 2005, 59, 323-354.
    • (2005) Mach. Learn , vol.59 , pp. 323-354
    • Cerquides, J.1    Lopez de Mantaras, R.2
  • 19
    • 63149186343 scopus 로고    scopus 로고
    • Meilǎ, M. and Jaakkola, T. Tractable Bayesian learning of tree belief networks. In Proceedings of the 16th Conference on Uncertainty in artificial intelligence, 2000, pp. 380-388 (Morgan Kaufmann, San Francisco).
    • Meilǎ, M. and Jaakkola, T. Tractable Bayesian learning of tree belief networks. In Proceedings of the 16th Conference on Uncertainty in artificial intelligence, 2000, pp. 380-388 (Morgan Kaufmann, San Francisco).
  • 20
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Search in a space of partially directed acyclic graphs
    • Acid, S., de Campos, L. M., and Castellano, J. G. Learning Bayesian network classifiers: search in a space of partially directed acyclic graphs. Mach. Learn., 2005, 59, 213-235.
    • (2005) Mach. Learn , vol.59 , pp. 213-235
    • Acid, S.1    de Campos, L.M.2    Castellano, J.G.3
  • 24
    • 14344256569 scopus 로고    scopus 로고
    • Grossman, D. and Domingos, P. Learning Bayesian network classifiers by maximizing conditional likelihood. In Proceedings of the 21st International Conference on Machine learning, Banff, Canada, 2004, pp. 361-368 (ACM, NewYork).
    • Grossman, D. and Domingos, P. Learning Bayesian network classifiers by maximizing conditional likelihood. In Proceedings of the 21st International Conference on Machine learning, Banff, Canada, 2004, pp. 361-368 (ACM, NewYork).
  • 25
    • 21244461917 scopus 로고    scopus 로고
    • Learning the structure of augmented Bayesian classifiers
    • Keogh, E. and Pazzani, M. J. Learning the structure of augmented Bayesian classifiers. Int. J. Artif. Intell. Tools, 2002, 11(4), 587-601.
    • (2002) Int. J. Artif. Intell. Tools , vol.11 , Issue.4 , pp. 587-601
    • Keogh, E.1    Pazzani, M.J.2
  • 26
    • 29144477220 scopus 로고    scopus 로고
    • Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
    • Hwang, K. and Zhang, B. Bayesian model averaging of Bayesian network classifiers over multiple node-orders: application to sparse datasets. IEEE Trans. Syst. Man Cybern. B, Cybern., 2005, 35(6), 1302-1310.
    • (2005) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.35 , Issue.6 , pp. 1302-1310
    • Hwang, K.1    Zhang, B.2
  • 27
    • 31844453166 scopus 로고    scopus 로고
    • Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes
    • Bonn, Germany
    • Jing, Y., Pavlovic, V., and Rehg, J. M. Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 2005, pp. 369-376.
    • (2005) Proceedings of the 22nd International Conference on Machine Learning , pp. 369-376
    • Jing, Y.1    Pavlovic, V.2    Rehg, J.M.3
  • 29
    • 70350674995 scopus 로고
    • On the shortest spanning subtree of a graph and the traveling salesman problem
    • Kruskal, Jr., J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc., 1956, 7, 48-50.
    • (1956) Proc. Am. Math. Soc , vol.7 , pp. 48-50
    • Kruskal Jr., J.B.1
  • 32
    • 84915005479 scopus 로고
    • Probability of error, equivocation, and the Chernoff bound
    • Hellman, M. E. and Raviv, J. Probability of error, equivocation, and the Chernoff bound. IEEE Trans. Inform. Theory, 1970, IT-16, 368-372.
    • (1970) IEEE Trans. Inform. Theory , vol.IT-16 , pp. 368-372
    • Hellman, M.E.1    Raviv, J.2
  • 34
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • John, G. and Kohavi, R. Wrappers for feature subset selection. Artif. Intell., 1997, 97, 273-324.
    • (1997) Artif. Intell , vol.97 , pp. 273-324
    • John, G.1    Kohavi, R.2
  • 37
    • 0000974044 scopus 로고
    • Control chart pattern recognition using neural networks
    • Pham, D. T. and Oztemel, E. Control chart pattern recognition using neural networks. J. Syst. Eng., 1992, 2, 256-262.
    • (1992) J. Syst. Eng , vol.2 , pp. 256-262
    • Pham, D.T.1    Oztemel, E.2
  • 38
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann, San Francisco
    • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Francisco, 1995, pp. 1137-1143.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 40
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 41
    • 63149111562 scopus 로고    scopus 로고
    • Data Mining Tools See5 and C5.0. Available from http://rulequest.com/ see5-info.html.
    • Data Mining Tools See5 and C5.0. Available from http://rulequest.com/ see5-info.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.