메뉴 건너뛰기




Volumn 8, Issue 4, 2009, Pages 655-664

UV-dependent interaction between Cep164 and XPA mediates localization of Cep164 at sites of DNA damage and UV sensitivity

Author keywords

ATR ATRIP; CEP164; CHK1; CPD; DNA damage signal pathways; XPA

Indexed keywords

AMINO ACID; CELL PROTEIN; CHECKPOINT KINASE 1; PROTEIN CEP164; PYRIMIDINE DIMER; UNCLASSIFIED DRUG; XERODERMA PIGMENTOSUM GROUP A PROTEIN;

EID: 61449223621     PISSN: 15384101     EISSN: 15514005     Source Type: Journal    
DOI: 10.4161/cc.8.4.7844     Document Type: Article
Times cited : (32)

References (65)
  • 1
    • 85015066476 scopus 로고    scopus 로고
    • DNA damage and repair
    • Friedberg EC. DNA damage and repair. Nature 2003; 421:436-40.
    • (2003) Nature , vol.421 , pp. 436-440
    • Friedberg, E.C.1
  • 2
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • 2
    • 2.Lindahl T Instability and decay of the primary structure of DNA. Nature 1993; 362:709-15.
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 3
    • 16144367065 scopus 로고
    • Out of the shadows and into the light - the emergence of DNA-repair
    • Friedberg EC. Out of the shadows and into the light - the emergence of DNA-repair. Trends Biochem Sci 1995; 20:381.
    • (1995) Trends Biochem Sci , vol.20 , pp. 381
    • Friedberg, E.C.1
  • 4
    • 0036557024 scopus 로고    scopus 로고
    • UV-induced DNA damage and repair: A review
    • Sinha RP, Hader DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 2002; 1:225-36.
    • (2002) Photochem Photobiol Sci , vol.1 , pp. 225-236
    • Sinha, R.P.1    Hader, D.P.2
  • 5
    • 0035449355 scopus 로고    scopus 로고
    • Cell cycle checkpoint signaling through the ATM and ATR kinases
    • Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001; 15:2177-96.
    • (2001) Genes Dev , vol.15 , pp. 2177-2196
    • Abraham, R.T.1
  • 7
    • 9244229490 scopus 로고    scopus 로고
    • cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein
    • Cimprich KA, Shin TB, Keith CT, Schreiber SL. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci USA 1996; 93:2850-5.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 2850-2855
    • Cimprich, K.A.1    Shin, T.B.2    Keith, C.T.3    Schreiber, S.L.4
  • 9
    • 0037365789 scopus 로고    scopus 로고
    • ATM and related protein kinases: Safeguarding genome integrity
    • Shiloh Y. ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer 2003; 3:155-68.
    • (2003) Nat Rev Cancer , vol.3 , pp. 155-168
    • Shiloh, Y.1
  • 10
    • 0035927713 scopus 로고    scopus 로고
    • ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses
    • Bao SD, Tibbetts RS, Brumbaugh KM, Fang YN, Richardson DA, Ali A, et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 2001; 411:969-74.
    • (2001) Nature , vol.411 , pp. 969-974
    • Bao, S.D.1    Tibbetts, R.S.2    Brumbaugh, K.M.3    Fang, Y.N.4    Richardson, D.A.5    Ali, A.6
  • 11
    • 0035818485 scopus 로고    scopus 로고
    • Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G(1)/S checkpoint activation in response to DNA damage
    • Post S, Weng YC, Cimprich K, Chen LB, Xu Y, Lee EYHP. Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G(1)/S checkpoint activation in response to DNA damage. Proc Natl Acad Sci USA 2001; 98:13102-7.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 13102-13107
    • Post, S.1    Weng, Y.C.2    Cimprich, K.3    Chen, L.B.4    Xu, Y.5    Lee, E.Y.H.P.6
  • 12
    • 0141940265 scopus 로고    scopus 로고
    • The human checkpoint Rad protein Rad17 is chro-matin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon
    • Post SM, Tomkinson AE, Lee EYHP. The human checkpoint Rad protein Rad17 is chro-matin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon. Nucleic Acids Res 2003; 31:5568-75.
    • (2003) Nucleic Acids Res , vol.31 , pp. 5568-5575
    • Post, S.M.1    Tomkinson, A.E.2    Lee, E.Y.H.P.3
  • 13
    • 33845715977 scopus 로고    scopus 로고
    • ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling
    • Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P, et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 2006; 25:5775-82.
    • (2006) EMBO J , vol.25 , pp. 5775-5782
    • Stiff, T.1    Walker, S.A.2    Cerosaletti, K.3    Goodarzi, A.A.4    Petermann, E.5    Concannon, P.6
  • 14
    • 0034967556 scopus 로고    scopus 로고
    • ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1
    • Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 2001; 21:4129-39.
    • (2001) Mol Cell Biol , vol.21 , pp. 4129-4139
    • Zhao, H.1    Piwnica-Worms, H.2
  • 15
    • 33749626550 scopus 로고    scopus 로고
    • Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit
    • Leung-Pineda V, Ryan CE, Piwnica-Worms H. Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol Cell Biol 2006; 26:7529-38.
    • (2006) Mol Cell Biol , vol.26 , pp. 7529-7538
    • Leung-Pineda, V.1    Ryan, C.E.2    Piwnica-Worms, H.3
  • 17
    • 30344463835 scopus 로고    scopus 로고
    • ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks
    • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GCM, Lukas J, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006; 8:13-37.
    • (2006) Nat Cell Biol , vol.8 , pp. 13-37
    • Jazayeri, A.1    Falck, J.2    Lukas, C.3    Bartek, J.4    Smith, G.C.M.5    Lukas, J.6
  • 18
    • 33646777679 scopus 로고    scopus 로고
    • Rapid activation of ATR by ionizing radiation requires ATM and Mre11
    • Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 2006; 281:9346-50.
    • (2006) J Biol Chem , vol.281 , pp. 9346-9350
    • Myers, J.S.1    Cortez, D.2
  • 19
    • 3943107573 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
    • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73:39-85.
    • (2004) Annu Rev Biochem , vol.73 , pp. 39-85
    • Sancar, A.1    Lindsey-Boltz, L.A.2    Unsal-Kacmaz, K.3    Linn, S.4
  • 20
    • 0030732132 scopus 로고    scopus 로고
    • Mechanism of open complex and dual incision formation by human nucleotide excision repair factors
    • Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 1997; 16:6559-73.
    • (1997) EMBO J , vol.16 , pp. 6559-6573
    • Evans, E.1    Moggs, J.G.2    Hwang, J.R.3    Egly, J.M.4    Wood, R.D.5
  • 21
    • 0029870677 scopus 로고    scopus 로고
    • Reaction mechanism of human DNA repair excision nuclease
    • Mu D, Hsu DS, Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 1996; 271:8285-94.
    • (1996) J Biol Chem , vol.271 , pp. 8285-8294
    • Mu, D.1    Hsu, D.S.2    Sancar, A.3
  • 22
    • 0028896837 scopus 로고
    • Reconstitution of human DNA-repair excision nuclease in a highly defined system
    • Mu D, Park CH, Matsunaga T, Hsu DS, Reardon JT, Sancar A. Reconstitution of human DNA-repair excision nuclease in a highly defined system. J Biol Chem 1995; 270:2415-8.
    • (1995) J Biol Chem , vol.270 , pp. 2415-2418
    • Mu, D.1    Park, C.H.2    Matsunaga, T.3    Hsu, D.S.4    Reardon, J.T.5    Sancar, A.6
  • 23
    • 0031060362 scopus 로고    scopus 로고
    • Role of DNA excision repair gene defects in the etiology of cancer
    • Ford JM, Hanawalt PC. Role of DNA excision repair gene defects in the etiology of cancer. Curr Top Microbiol Immunol 1997; 221:47-70.
    • (1997) Curr Top Microbiol Immunol , vol.221 , pp. 47-70
    • Ford, J.M.1    Hanawalt, P.C.2
  • 24
    • 0942268166 scopus 로고    scopus 로고
    • DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy
    • Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003; 85:1101-11.
    • (2003) Biochimie , vol.85 , pp. 1101-1111
    • Lehmann, A.R.1
  • 25
    • 0037178748 scopus 로고    scopus 로고
    • Interfaces between the detection, signaling and repair of DNA damage
    • Rouse J, Jackson SP. Interfaces between the detection, signaling and repair of DNA damage. Science 2002; 297:547-51.
    • (2002) Science , vol.297 , pp. 547-551
    • Rouse, J.1    Jackson, S.P.2
  • 26
    • 1542320702 scopus 로고    scopus 로고
    • Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint
    • Giannattasio M, Lazzaro F, Longhese MP, Plevani P, Muzi-Falconi M. Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO J 2004; 23:429-38.
    • (2004) EMBO J , vol.23 , pp. 429-438
    • Giannattasio, M.1    Lazzaro, F.2    Longhese, M.P.3    Plevani, P.4    Muzi-Falconi, M.5
  • 27
    • 5044231391 scopus 로고    scopus 로고
    • DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells
    • Giannattasio M, Lazzaro F, Siede W, Nunes E, Plevani P, Muzi-Falconi M. DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells. DNA Repair 2004; 3:1591-9.
    • (2004) DNA Repair , vol.3 , pp. 1591-1599
    • Giannattasio, M.1    Lazzaro, F.2    Siede, W.3    Nunes, E.4    Plevani, P.5    Muzi-Falconi, M.6
  • 28
    • 0033575659 scopus 로고    scopus 로고
    • Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1-and Rad53-dependent checkpoint in budding yeast
    • Neecke H, Lucchini G, Longhese MP. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1-and Rad53-dependent checkpoint in budding yeast. EMBO J 1999; 18:4485-97.
    • (1999) EMBO J , vol.18 , pp. 4485-4497
    • Neecke, H.1    Lucchini, G.2    Longhese, M.P.3
  • 29
    • 33745755895 scopus 로고    scopus 로고
    • Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling
    • Bomgarden D, Lupardus PJ, Soni DV, Yee MC, Ford JM, Cimprich KA. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. EMBO J 2006; 25:2605-14.
    • (2006) EMBO J , vol.25 , pp. 2605-2614
    • Bomgarden, D.1    Lupardus, P.J.2    Soni, D.V.3    Yee, M.C.4    Ford, J.M.5    Cimprich, K.A.6
  • 30
    • 33645513410 scopus 로고    scopus 로고
    • Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group a by ataxia telangiectasia mutated and Rad3-related-dependent heckpoint pathway promotes cell survival in response to UV irradiation
    • Wu XM, Shell SM, Yang ZG, Zou Y. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group a by ataxia telangiectasia mutated and Rad3-related-dependent heckpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 2006; 66:2997-3005.
    • (2006) Cancer Res , vol.66 , pp. 2997-3005
    • Wu, X.M.1    Shell, S.M.2    Yang, Z.G.3    Zou, Y.4
  • 31
    • 0035941021 scopus 로고    scopus 로고
    • ATR and ATRIP: Partners in checkpoint signaling
    • Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: Partners in checkpoint signaling. Science 2001; 294:1713-6.
    • (2001) Science , vol.294 , pp. 1713-1716
    • Cortez, D.1    Guntuku, S.2    Qin, J.3    Elledge, S.J.4
  • 32
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542-8.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 33
    • 4043088472 scopus 로고    scopus 로고
    • DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells
    • Dodson GE, Shi YL, Tibbetts RS. DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells. J Biol Chem 2004; 279:34010-4.
    • (2004) J Biol Chem , vol.279 , pp. 34010-34014
    • Dodson, G.E.1    Shi, Y.L.2    Tibbetts, R.S.3
  • 34
    • 0346874342 scopus 로고    scopus 로고
    • Proteomic characterization of the human centrosome by protein correlation profiling
    • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003; 426:570-4.
    • (2003) Nature , vol.426 , pp. 570-574
    • Andersen, J.S.1    Wilkinson, C.J.2    Mayor, T.3    Mortensen, P.4    Nigg, E.A.5    Mann, M.6
  • 36
    • 40349087260 scopus 로고    scopus 로고
    • Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA and CHK1
    • Sivasubramaniam S, Sun XM, Pan YR, Wang SH, Lee EYHP. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA and CHK1. Genes Dev 2008; 22:587-600.
    • (2008) Genes Dev , vol.22 , pp. 587-600
    • Sivasubramaniam, S.1    Sun, X.M.2    Pan, Y.R.3    Wang, S.H.4    Lee, E.Y.H.P.5
  • 37
    • 55349107594 scopus 로고    scopus 로고
    • Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: Cancer-rone Xeroderma pigmentosum vs. non-cancer-prone Trichothiodystrophy
    • Boyle J, Ueda T, Oh KS, Imoto K, Tamura D, Jagdeo J, et al. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: Cancer-rone Xeroderma pigmentosum vs. non-cancer-prone Trichothiodystrophy. Hum Mutat 2008; 29:1194-208.
    • (2008) Hum Mutat , vol.29 , pp. 1194-1208
    • Boyle, J.1    Ueda, T.2    Oh, K.S.3    Imoto, K.4    Tamura, D.5    Jagdeo, J.6
  • 38
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R. Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins. Cell 2004; 118:699-713.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 40
    • 0029031406 scopus 로고
    • Expression of a transfected DNA-repair gene (XPA) in xeroderma pigmentosum group A cells restores normal DNA-repair and mutagenesis of UV-treated plasmids
    • Levy DD, Saijo M, Tanaka K, Kraemer KH. Expression of a transfected DNA-repair gene (XPA) in xeroderma pigmentosum group A cells restores normal DNA-repair and mutagenesis of UV-treated plasmids. Carcinogenesis 1995; 16:1557-63.
    • (1995) Carcinogenesis , vol.16 , pp. 1557-1563
    • Levy, D.D.1    Saijo, M.2    Tanaka, K.3    Kraemer, K.H.4
  • 41
    • 33645223728 scopus 로고    scopus 로고
    • Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences
    • Jiang GC, Sancar A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol Cell Biol 2006; 26:39-49.
    • (2006) Mol Cell Biol , vol.26 , pp. 39-49
    • Jiang, G.C.1    Sancar, A.2
  • 42
    • 0027292296 scopus 로고
    • The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer
    • Tornaletti S, Rozek D, Pfeifer GP. The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene 1993; 8:2051-7.
    • (1993) Oncogene , vol.8 , pp. 2051-2057
    • Tornaletti, S.1    Rozek, D.2    Pfeifer, G.P.3
  • 43
    • 39549114009 scopus 로고    scopus 로고
    • Differential regulation of the cellular response to DNA double-strand breaks in G1
    • Barlow JH, Lisby M, Rothstein R. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 2008; 30:73-85.
    • (2008) Mol Cell , vol.30 , pp. 73-85
    • Barlow, J.H.1    Lisby, M.2    Rothstein, R.3
  • 45
    • 38049164275 scopus 로고    scopus 로고
    • Eukaryotic nucleotide excision repair: From understanding mechanisms to influencing biology
    • Shuck SC, Short EA, Turchi JJ. Eukaryotic nucleotide excision repair: From understanding mechanisms to influencing biology. Cell Res 2008; 18:64-72.
    • (2008) Cell Res , vol.18 , pp. 64-72
    • Shuck, S.C.1    Short, E.A.2    Turchi, J.J.3
  • 46
    • 0027483739 scopus 로고
    • Preferential binding of the Xeroderma-pigmentosum Group-A complementing protein to damaged DNA
    • Jones CJ, Wood RD. Preferential binding of the Xeroderma-pigmentosum Group-A complementing protein to damaged DNA. Biochemistry 1993; 32:12096-104.
    • (1993) Biochemistry , vol.32 , pp. 12096-12104
    • Jones, C.J.1    Wood, R.D.2
  • 47
    • 0026625629 scopus 로고
    • Mutational analysis of the structure and function of the Xeroderma-pigmentosum Group-A complementing protein - Identification of essential domains for nuclear-localization and DNA excision repair
    • Miyamoto I, Miura N, Niwa H, Miyazaki J, Tanaka K. Mutational analysis of the structure and function of the Xeroderma-pigmentosum Group-A complementing protein - Identification of essential domains for nuclear-localization and DNA excision repair. J Biol Chem 1992; 267:12182-7.
    • (1992) J Biol Chem , vol.267 , pp. 12182-12187
    • Miyamoto, I.1    Miura, N.2    Niwa, H.3    Miyazaki, J.4    Tanaka, K.5
  • 48
    • 3242885155 scopus 로고    scopus 로고
    • The switch from survival responses to apoptosis after chromosomal breaks
    • Bree RT, Neary C, Samali A, Lowndes NF. The switch from survival responses to apoptosis after chromosomal breaks. DNA Repair 2004; 3:989-95.
    • (2004) DNA Repair , vol.3 , pp. 989-995
    • Bree, R.T.1    Neary, C.2    Samali, A.3    Lowndes, N.F.4
  • 49
    • 34247257202 scopus 로고    scopus 로고
    • MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA. The structural determinants of checkpoint activation. Genes Dev2007; 21:898-903.
    • MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA. The structural determinants of checkpoint activation. Genes Dev2007; 21:898-903.
  • 51
    • 33745607326 scopus 로고    scopus 로고
    • H2AX phosphorylation within the G(1) phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks
    • Marti TM, Hefner E, Feeney L, Natale V, Cleaver JE. H2AX phosphorylation within the G(1) phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci USA 2006; 103:9891-6.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 9891-9896
    • Marti, T.M.1    Hefner, E.2    Feeney, L.3    Natale, V.4    Cleaver, J.E.5
  • 52
    • 34247354227 scopus 로고    scopus 로고
    • Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells
    • Matsumoto M, Yaginuma K, Igarashi A, Imura M, Hasegawa M, Iwabuchi K, et al. Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J Cell Sci 2007; 120:1104-12.
    • (2007) J Cell Sci , vol.120 , pp. 1104-1112
    • Matsumoto, M.1    Yaginuma, K.2    Igarashi, A.3    Imura, M.4    Hasegawa, M.5    Iwabuchi, K.6
  • 53
    • 0345073699 scopus 로고    scopus 로고
    • A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome
    • O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 2003; 33:497-501.
    • (2003) Nat Genet , vol.33 , pp. 497-501
    • O'Driscoll, M.1    Ruiz-Perez, V.L.2    Woods, C.G.3    Jeggo, P.A.4    Goodship, J.A.5
  • 54
  • 55
    • 33846980409 scopus 로고    scopus 로고
    • CPD damage recognition by transcribing RNA polymerase II
    • Brueckner F, Hennecke U, Carell T, Cramer P. CPD damage recognition by transcribing RNA polymerase II. Science 2007; 315:859-62.
    • (2007) Science , vol.315 , pp. 859-862
    • Brueckner, F.1    Hennecke, U.2    Carell, T.3    Cramer, P.4
  • 56
    • 33846849467 scopus 로고    scopus 로고
    • ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation
    • Wu X, Shell SM, Liu Y, Zou Y. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 2007; 26:757-64.
    • (2007) Oncogene , vol.26 , pp. 757-764
    • Wu, X.1    Shell, S.M.2    Liu, Y.3    Zou, Y.4
  • 57
    • 0031825065 scopus 로고    scopus 로고
    • Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA
    • Ikegami T, Kuraoka I, Saijo M, Kodo N, Kyogoku Y, Morikawa K, et al. Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. Nat Struct Biol 1998; 5:701-6.
    • (1998) Nat Struct Biol , vol.5 , pp. 701-706
    • Ikegami, T.1    Kuraoka, I.2    Saijo, M.3    Kodo, N.4    Kyogoku, Y.5    Morikawa, K.6
  • 58
    • 0032910982 scopus 로고    scopus 로고
    • Resonance assignments, solution structure and backbone dynamics of the DNA- and RPA-binding domain of human repair factor XPA
    • Ikegami T, Kuraoka I, Saijo M, Kodo N, Kyogoku Y, Morikawa K, et al. Resonance assignments, solution structure and backbone dynamics of the DNA- and RPA-binding domain of human repair factor XPA. J Biochem 1999; 125:495-506.
    • (1999) J Biochem , vol.125 , pp. 495-506
    • Ikegami, T.1    Kuraoka, I.2    Saijo, M.3    Kodo, N.4    Kyogoku, Y.5    Morikawa, K.6
  • 59
    • 0034734345 scopus 로고    scopus 로고
    • Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA
    • Morikawa K, Shirakawa M. Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA. Mutat Res 2000; 460:257-75.
    • (2000) Mutat Res , vol.460 , pp. 257-275
    • Morikawa, K.1    Shirakawa, M.2
  • 60
    • 33947146069 scopus 로고    scopus 로고
    • Domains in the XPA protein important in its role as a processivity factor
    • Bartels CL, Lambert MW. Domains in the XPA protein important in its role as a processivity factor. Biochem Biophys Res Commun 2007; 356:219-25.
    • (2007) Biochem Biophys Res Commun , vol.356 , pp. 219-225
    • Bartels, C.L.1    Lambert, M.W.2
  • 61
    • 0029828941 scopus 로고    scopus 로고
    • Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro
    • Saijo M, Kuraoka I, Masutani C, Hanaoka F, Tanaka K. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res 1996; 24:4719-24.
    • (1996) Nucleic Acids Res , vol.24 , pp. 4719-4724
    • Saijo, M.1    Kuraoka, I.2    Masutani, C.3    Hanaoka, F.4    Tanaka, K.5
  • 63
    • 0034054019 scopus 로고    scopus 로고
    • Nucleotide excision repair and human syndromes
    • de Boer J, Hoeijmakers JHJ. Nucleotide excision repair and human syndromes. Carcinogenesis 2000; 21:453-60.
    • (2000) Carcinogenesis , vol.21 , pp. 453-460
    • de Boer, J.1    Hoeijmakers, J.H.J.2
  • 64
    • 0033388858 scopus 로고    scopus 로고
    • In vivo cross-linking and immunoprecipitation for studying dynamic protein: DNA associations in chromatin environment
    • Kuo MH, Allis CD. In vivo cross-linking and immunoprecipitation for studying dynamic protein: DNA associations in chromatin environment. Methods 1999; 19:425-33.
    • (1999) Methods , vol.19 , pp. 425-433
    • Kuo, M.H.1    Allis, C.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.