메뉴 건너뛰기




Volumn 93, Issue 2, 2009, Pages 124-139

Probability fold change: A robust computational approach for identifying differentially expressed gene lists

Author keywords

Differentially expressed gene; DNA microarray; Gene expression; Gene ranking algorithm

Indexed keywords

BAYESIAN; BENCHMARK DATUMS; BIOLOGICAL INTERPRETATIONS; COMPUTATIONAL APPROACHES; CONFIDENCE INTERVALS; DATA SETS; DIFFERENTIALLY EXPRESSED GENE; DNA MICROARRAY; EXPERIMENTAL CONDITIONS; EXTENSIVE TESTING; GENE LISTS; LATIN SQUARES; MICROARRAY DATA ANALYSES; NEW ALGORITHMS; QUALITY ASPECTS; RANKING METHODS; REPRODUCIBILITY; STATISTICAL ACCURACIES;

EID: 58149277477     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2008.07.013     Document Type: Article
Times cited : (7)

References (58)
  • 1
    • 0037012922 scopus 로고    scopus 로고
    • Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays
    • Clark T.A., Sugnet C.W., and Ares Jr. M. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296 (2002) 907-910
    • (2002) Science , vol.296 , pp. 907-910
    • Clark, T.A.1    Sugnet, C.W.2    Ares Jr., M.3
  • 2
    • 84984934048 scopus 로고    scopus 로고
    • DNA microarrays in drug discovery and development
    • Debouck C., and Goodfellow P.N. DNA microarrays in drug discovery and development. Nat. Genet. 21 (1999) 48-50
    • (1999) Nat. Genet. , vol.21 , pp. 48-50
    • Debouck, C.1    Goodfellow, P.N.2
  • 5
    • 0034903169 scopus 로고    scopus 로고
    • DNA microarrays and beyond: completing the journey from tissue to cell
    • Mills J.C., Roth K.A., Cagan R.L., and Gordon J.I. DNA microarrays and beyond: completing the journey from tissue to cell. Nat. Cell Biol. 3 (2001) E175-E178
    • (2001) Nat. Cell Biol. , vol.3
    • Mills, J.C.1    Roth, K.A.2    Cagan, R.L.3    Gordon, J.I.4
  • 7
    • 13744261323 scopus 로고    scopus 로고
    • Multi-class cancer classification by total principal component regression (TPCR) using microarray gene expression data
    • Tan Y., Shi L., Tong W., and Wang C. Multi-class cancer classification by total principal component regression (TPCR) using microarray gene expression data. Nucleic Acids Res. 33 (2005) 56-65
    • (2005) Nucleic Acids Res. , vol.33 , pp. 56-65
    • Tan, Y.1    Shi, L.2    Tong, W.3    Wang, C.4
  • 8
    • 3142537293 scopus 로고    scopus 로고
    • Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models
    • Tan Y., Shi L., Tong W., Hwang G.T., and Wang C. Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models. Comput. Biol. Chem. 28 (2004) 235-244
    • (2004) Comput. Biol. Chem. , vol.28 , pp. 235-244
    • Tan, Y.1    Shi, L.2    Tong, W.3    Hwang, G.T.4    Wang, C.5
  • 9
    • 33751243618 scopus 로고    scopus 로고
    • Link test-a statistical method for finding prostate cancer biomarkers
    • Deng X., Geng H., Bastola D.R., and Ali H.H. Link test-a statistical method for finding prostate cancer biomarkers. Comput. Biol. Chem. 30 (2006) 425-433
    • (2006) Comput. Biol. Chem. , vol.30 , pp. 425-433
    • Deng, X.1    Geng, H.2    Bastola, D.R.3    Ali, H.H.4
  • 10
    • 43049127535 scopus 로고    scopus 로고
    • Cross-platform analysis of cancer biomarkers: a Bayesian network approach to incorporating mass spectrometry and microarray data
    • Deng X., Geng H., and Ali H.H. Cross-platform analysis of cancer biomarkers: a Bayesian network approach to incorporating mass spectrometry and microarray data. Cancer Inform. 2 (2007) 183-202
    • (2007) Cancer Inform. , vol.2 , pp. 183-202
    • Deng, X.1    Geng, H.2    Ali, H.H.3
  • 12
    • 4744364173 scopus 로고    scopus 로고
    • Cancer classification and prediction using logistic regression with Bayesian gene selection
    • Zhou X., Liu K.Y., and Wong S.T. Cancer classification and prediction using logistic regression with Bayesian gene selection. J. Biomed. Inform. 37 (2004) 249-259
    • (2004) J. Biomed. Inform. , vol.37 , pp. 249-259
    • Zhou, X.1    Liu, K.Y.2    Wong, S.T.3
  • 17
    • 9144268360 scopus 로고    scopus 로고
    • Empirical evaluation of data transformations and ranking statistics for microarray analysis
    • Qin L.X., and Kerr K.F. Empirical evaluation of data transformations and ranking statistics for microarray analysis. Nucleic Acids Res. 32 (2004) 5471-5479
    • (2004) Nucleic Acids Res. , vol.32 , pp. 5471-5479
    • Qin, L.X.1    Kerr, K.F.2
  • 18
    • 7444234286 scopus 로고    scopus 로고
    • Getting the noise out of gene arrays
    • Marshall E. Getting the noise out of gene arrays. Science 306 (2004) 630-631
    • (2004) Science , vol.306 , pp. 630-631
    • Marshall, E.1
  • 19
    • 2342624566 scopus 로고    scopus 로고
    • Microarray reality checks in the context of a complex disease
    • Miklos G.L., and Maleszka R. Microarray reality checks in the context of a complex disease. Nat. Biotechnol. 22 (2004) 615-621
    • (2004) Nat. Biotechnol. , vol.22 , pp. 615-621
    • Miklos, G.L.1    Maleszka, R.2
  • 26
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan W. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18 (2002) 546-554
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 28
    • 58149317335 scopus 로고    scopus 로고
    • Affymetrix, http://www.affymetrix.com/analysis/download_center2.affx, 2007.
    • Affymetrix, http://www.affymetrix.com/analysis/download_center2.affx, 2007.
  • 29
    • 0037187833 scopus 로고    scopus 로고
    • A mixture model approach for the analysis of microarray gene expression data
    • Allison D.B. A mixture model approach for the analysis of microarray gene expression data. Comput. Stat. Data Anal. 39 (2002) 1-20
    • (2002) Comput. Stat. Data Anal. , vol.39 , pp. 1-20
    • Allison, D.B.1
  • 30
    • 0037276175 scopus 로고    scopus 로고
    • Statistical tests for differential expression in cDNA microarray experiments
    • Cui X., and Churchill G.A. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 4 (2003) 210
    • (2003) Genome Biol. , vol.4 , pp. 210
    • Cui, X.1    Churchill, G.A.2
  • 31
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher V.G., Tibshirani R., and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 5116-5121
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 32
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    • Baldi P., and Long A.D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17 (2001) 509-519
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 33
    • 0037590376 scopus 로고    scopus 로고
    • The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data
    • Mutch D.M., Berger A., Mansourian R., Rytz A., and Roberts M.A. The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformat. 3 (2002) 17
    • (2002) BMC Bioinformat. , vol.3 , pp. 17
    • Mutch, D.M.1    Berger, A.2    Mansourian, R.3    Rytz, A.4    Roberts, M.A.5
  • 35
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • Breitling R., Armengaud P., Amtmann A., and Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573 (2004) 83-92
    • (2004) FEBS Lett. , vol.573 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 36
    • 0036791003 scopus 로고    scopus 로고
    • Significance and statistical errors in the analysis of DNA microarray data
    • Brody J.P., Williams B.A., Wold B.J., and Quake S.R. Significance and statistical errors in the analysis of DNA microarray data. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 12975-12978
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 12975-12978
    • Brody, J.P.1    Williams, B.A.2    Wold, B.J.3    Quake, S.R.4
  • 37
    • 33646234749 scopus 로고    scopus 로고
    • A simple method for assessing sample sizes in microarray experiments
    • Tibshirani R. A simple method for assessing sample sizes in microarray experiments. BMC Bioinformat. 7 (2006) 106
    • (2006) BMC Bioinformat. , vol.7 , pp. 106
    • Tibshirani, R.1
  • 38
    • 0041592555 scopus 로고    scopus 로고
    • On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression
    • Pan W. On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics 19 (2003) 1333-1340
    • (2003) Bioinformatics , vol.19 , pp. 1333-1340
    • Pan, W.1
  • 39
    • 28444438861 scopus 로고    scopus 로고
    • A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data
    • Xie Y., Pan W., and Khodursky A.B. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics 21 (2005) 4280-4288
    • (2005) Bioinformatics , vol.21 , pp. 4280-4288
    • Xie, Y.1    Pan, W.2    Khodursky, A.B.3
  • 40
    • 58149310151 scopus 로고    scopus 로고
    • Affymetrix, Guide to Probe Logarithmic Intensity Error (PLIER) Estimation, Affymetrix, 2005.
    • Affymetrix, Guide to Probe Logarithmic Intensity Error (PLIER) Estimation, Affymetrix, 2005.
  • 41
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad B.M., Irizarry R.A., Astrand M., and Speed T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19 (2003) 185-193
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 42
    • 0035714069 scopus 로고    scopus 로고
    • Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies
    • Rajeevan M.S., Ranamukhaarachchi D.G., Vernon S.D., and Unger E.R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25 (2001) 443-451
    • (2001) Methods , vol.25 , pp. 443-451
    • Rajeevan, M.S.1    Ranamukhaarachchi, D.G.2    Vernon, S.D.3    Unger, E.R.4
  • 43
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • Jeffery I.B., Higgins D.G., and Culhane A.C. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformat. 7 (2006) 359
    • (2006) BMC Bioinformat. , vol.7 , pp. 359
    • Jeffery, I.B.1    Higgins, D.G.2    Culhane, A.C.3
  • 44
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas J.G., Olson J.M., Tapscott S.J., and Zhao L.P. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11 (2001) 1227-1236
    • (2001) Genome Res. , vol.11 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, L.P.4
  • 45
    • 0001677717 scopus 로고
    • Controlling the false discovery rate-a practical and powerful approach to multiple testing
    • Benjamini Y., and Hochberg Y. Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57 (1995) 289-300
    • (1995) J. R. Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 46
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi J.L., Iyer V.R., and Brown P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278 (1997) 680-686
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 48
    • 58149278496 scopus 로고    scopus 로고
    • B. Efron, R. Tibshirani, V. Goss, G. Chu, Microarrays and their use in comparative experiments. Technical Report TR 213, Stanford University, 2000.
    • B. Efron, R. Tibshirani, V. Goss, G. Chu, Microarrays and their use in comparative experiments. Technical Report TR 213, Stanford University, 2000.
  • 50
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • Troyanskaya O.G., Garber M.E., Brown P.O., Botstein D., and Altman R.B. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 18 (2002) 1454-1461
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, O.G.1    Garber, M.E.2    Brown, P.O.3    Botstein, D.4    Altman, R.B.5
  • 51
    • 0036012343 scopus 로고    scopus 로고
    • Replicated microarray data
    • Lonnstedt I., and Speed T. Replicated microarray data. Stat. Sin. 12 (2006) 31-46
    • (2006) Stat. Sin. , vol.12 , pp. 31-46
    • Lonnstedt, I.1    Speed, T.2
  • 52
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton M.A., Noueiry A., Sarkar D., and Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5 (2004) 155-176
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 53
    • 0036051492 scopus 로고    scopus 로고
    • How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
    • (research0022)
    • Pan W., Lin J., and Le C.T. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 3 (2002) (research0022)
    • (2002) Genome Biol. , vol.3
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 55
    • 34548570211 scopus 로고    scopus 로고
    • A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments
    • Zhou Y., Cras-Meneur C., Ohsugi M., Stormo G.D., and Permutt M.A. A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments. Bioinformatics 23 (2007) 2073-2079
    • (2007) Bioinformatics , vol.23 , pp. 2073-2079
    • Zhou, Y.1    Cras-Meneur, C.2    Ohsugi, M.3    Stormo, G.D.4    Permutt, M.A.5
  • 56
    • 33748771707 scopus 로고    scopus 로고
    • On the identification of differentially expressed genes: improving the generalized F-statistics for Affymetrix microarray gene expression data
    • Lai Y. On the identification of differentially expressed genes: improving the generalized F-statistics for Affymetrix microarray gene expression data. Comput. Biol. Chem. 30 (2006) 321-326
    • (2006) Comput. Biol. Chem. , vol.30 , pp. 321-326
    • Lai, Y.1
  • 57
    • 16344371755 scopus 로고    scopus 로고
    • Identifying differentially expressed genes from microarray experiments via statistic synthesis
    • Yang Y.H., Xiao Y., and Segal M.R. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 21 (2005) 1084-1093
    • (2005) Bioinformatics , vol.21 , pp. 1084-1093
    • Yang, Y.H.1    Xiao, Y.2    Segal, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.