메뉴 건너뛰기




Volumn 37, Issue 4, 2004, Pages 249-259

Cancer classification and prediction using logistic regression with Bayesian gene selection

Author keywords

Bayesian gene selection; Cancer classification; Gene microarray; Logistic regression

Indexed keywords

ACUTE LEUKEMIA; ARTICLE; BAYES THEOREM; BREAST CANCER; CANCER CLASSIFICATION; DNA MICROARRAY; FAMILIAL CANCER; GENE EXPRESSION; GENETIC ANALYSIS; HUMAN; LOGISTIC REGRESSION ANALYSIS; MONTE CARLO METHOD; PREDICTION; PRIORITY JOURNAL; PROBABILITY; SMALL CELL SARCOMA; STATISTICAL MODEL;

EID: 4744364173     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2004.07.009     Document Type: Article
Times cited : (124)

References (36)
  • 2
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, and A. Rosenwald Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling Nature 403 2000 503 511
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3    Ma, C.4    Lossos, I.S.5    Rosenwald, A.6
  • 3
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • A. Antoniadis, S. Lambert-Lacroix, and F. Leblanc Effective dimension reduction methods for tumor classification using gene expression data Bioinformatics 19 2003 563 570
    • (2003) Bioinformatics , vol.19 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 6
    • 0026752141 scopus 로고
    • Genetic marker associations with proliferative retinopathy in persons diagnosed with diabetes before 30 year of age
    • K.J. Cruickshanks, C.M. Vadheim, S.E. Moss, M.P. Roth, W.J. Riley, and N.K. Maclaren Genetic marker associations with proliferative retinopathy in persons diagnosed with diabetes before 30 year of age Diabetes 41 1992 879 885
    • (1992) Diabetes , vol.41 , pp. 879-885
    • Cruickshanks, K.J.1    Vadheim, C.M.2    Moss, S.E.3    Roth, M.P.4    Riley, W.J.5    MacLaren, N.K.6
  • 7
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • J.L. DeRisi, V.R. Iyer, and P.O. Brown Exploring the metabolic and genetic control of gene expression on a genomic scale Science 278 1997 680 686
    • (1997) Science , vol.278 , pp. 680-686
    • Derisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 9
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, and J.P. Mesirov Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286 1999 531 537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Machine Learning 46 2002 389 422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 0037715342 scopus 로고    scopus 로고
    • Simultaneous gene clustering and subset selection for classification via MDL
    • R. Jornsten, and B. Yu Simultaneous gene clustering and subset selection for classification via MDL Bioinformatics 19 2003 1100 1109
    • (2003) Bioinformatics , vol.19 , pp. 1100-1109
    • Jornsten, R.1    Yu, B.2
  • 13
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, and F. Westermann Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks Nature Medicine 7 2001 673 679
    • (2001) Nature Medicine , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringner, M.3    Saal, L.H.4    Ladanyi, M.5    Westermann, F.6
  • 16
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • L. Li, C.R. Weinberg, T.A. Darden, and L.G. Pedersen Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method Bioinformatics 17 2001 1131 1142
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 17
    • 0000984930 scopus 로고    scopus 로고
    • How many genes are needed for a discriminant microarray data analysis?
    • S.M. Lin K.F. Johnson Kluwer Academic
    • W. Li, and Y. Yang How many genes are needed for a discriminant microarray data analysis? S.M. Lin K.F. Johnson Methods of microarray data analysis 2002 Kluwer Academic 137 150
    • (2002) Methods of Microarray Data Analysis , pp. 137-150
    • Li, W.1    Yang, Y.2
  • 19
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • D.V. Nguyen, and D.M. Rocke Tumor classification by partial least squares using microarray gene expression data Bioinformatics 18 2002 39 50
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 22
    • 1542610478 scopus 로고    scopus 로고
    • Links goodness-of-fit tests for ordinal response regression models
    • E. Pulkstenis, and T.J. Robinson Links goodness-of-fit tests for ordinal response regression models Statistical Medicine 23 2004 999 1014
    • (2004) Statistical Medicine , vol.23 , pp. 999-1014
    • Pulkstenis, E.1    Robinson, T.J.2
  • 24
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • C. Robert Simulation of truncated normal variables Statistics and Computing 5 1995 121 125
    • (1995) Statistics and Computing , vol.5 , pp. 121-125
    • Robert, C.1
  • 25
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • M. Schena, D. Shalon, R.W. Davis, and P.O. Brown Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science 270 1995 467 470
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 28
    • 0029812283 scopus 로고    scopus 로고
    • A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization
    • D. Shalon, S.J. Smith, and P.O. Brown A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization Genome Research 6 1996 639 645
    • (1996) Genome Research , vol.6 , pp. 639-645
    • Shalon, D.1    Smith, S.J.2    Brown, P.O.3
  • 29
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, and M.B. Eisen Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Molecular Biology of the Cell 9 1998 3273 3970
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3970
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6
  • 30
    • 0037399771 scopus 로고    scopus 로고
    • Classification and feature gene selection using the normalized maximum likelihood for discrete regression
    • I. Tabus, J. Rissenan, and J. Astola Classification and feature gene selection using the normalized maximum likelihood for discrete regression Signal Processing 83 2003 713 727
    • (2003) Signal Processing , vol.83 , pp. 713-727
    • Tabus, I.1    Rissenan, J.2    Astola, J.3
  • 33
    • 0344033642 scopus 로고    scopus 로고
    • Missing value estimation based on linear and nonlinear regression with Bayesian gene selection
    • X. Zhou, X. Wang, and E.R. Dougherty Missing value estimation based on linear and nonlinear regression with Bayesian gene selection Bioinformatics 19 2003 2302 2307
    • (2003) Bioinformatics , vol.19 , pp. 2302-2307
    • Zhou, X.1    Wang, X.2    Dougherty, E.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.