-
2
-
-
31044455312
-
-
0034-4885 10.1088/0034-4885/69/2/R02.
-
J. Robertson, Rep. Prog. Phys. 0034-4885 10.1088/0034-4885/69/2/R02 69, 327 (2006).
-
(2006)
Rep. Prog. Phys.
, vol.69
, pp. 327
-
-
Robertson, J.1
-
3
-
-
0036573608
-
-
0163-1829 10.1103/PhysRevB.65.174117.
-
A. S. Foster, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, Phys. Rev. B 0163-1829 10.1103/PhysRevB.65.174117 65, 174117 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 174117
-
-
Foster, A.S.1
Gejo, F.L.2
Shluger, A.L.3
Nieminen, R.M.4
-
4
-
-
27344443406
-
-
0003-6951 10.1063/1.2119425.
-
K. Xiong, J. Robertson, M. C. Gibson, and S. J. Clark, Appl. Phys. Lett. 0003-6951 10.1063/1.2119425 87, 183505 (2005).
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 183505
-
-
Xiong, K.1
Robertson, J.2
Gibson, M.C.3
Clark, S.J.4
-
5
-
-
33947218825
-
-
0163-1829 10.1103/PhysRevB.75.104112.
-
J. X. Zheng, G. Ceder, T. Maxisch, W. K. Chim, and W. K. Choi, Phys. Rev. B 0163-1829 10.1103/PhysRevB.75.104112 75, 104112 (2007).
-
(2007)
Phys. Rev. B
, vol.75
, pp. 104112
-
-
Zheng, J.X.1
Ceder, G.2
Maxisch, T.3
Chim, W.K.4
Choi, W.K.5
-
6
-
-
34247574773
-
-
0741-3106 10.1109/LED.2007.894655.
-
N. Umezawa, K. Shiraishi, K. Torii, M. Boero, T. Chikyow, H. Watanabe, K. Yamabe, T. Ohno, K. Yamada, and Y. Nara, IEEE Electron Device Lett. 0741-3106 10.1109/LED.2007.894655 28, 363 (2007).
-
(2007)
IEEE Electron Device Lett.
, vol.28
, pp. 363
-
-
Umezawa, N.1
Shiraishi, K.2
Torii, K.3
Boero, M.4
Chikyow, T.5
Watanabe, H.6
Yamabe, K.7
Ohno, T.8
Yamada, K.9
Nara, Y.10
-
8
-
-
33747855477
-
-
0003-6951 10.1063/1.2236466.
-
J. L. Gavartin, D. M. Ramo, A. L. Shluger, G. Bersuker, and B. H. Lee, Appl. Phys. Lett. 0003-6951 10.1063/1.2236466 89, 082908 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 082908
-
-
Gavartin, J.L.1
Ramo, D.M.2
Shluger, A.L.3
Bersuker, G.4
Lee, B.H.5
-
10
-
-
43049093755
-
-
0021-8979 10.1063/1.2903870, (), and references therein.
-
E. Cockayne, J. Appl. Phys. 0021-8979 10.1063/1.2903870 103, 084103 (2008), and references therein.
-
(2008)
J. Appl. Phys.
, vol.103
, pp. 084103
-
-
Cockayne, E.1
-
11
-
-
12844286241
-
-
0163-1829 10.1103/PhysRevB.47.558.
-
G. Kresse and J. Hafner, Phys. Rev. B 0163-1829 10.1103/PhysRevB.47.558 47, RC558 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 558
-
-
Kresse, G.1
Hafner, J.2
-
12
-
-
2442537377
-
-
0163-1829 10.1103/PhysRevB.54.11169.
-
G. Kresse and J. Furthmüller, Phys. Rev. B 0163-1829 10.1103/PhysRevB.54.11169 54, 11169 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169
-
-
Kresse, G.1
Furthmüller, J.2
-
13
-
-
0000735254
-
-
0365-110X;, J. Am. Ceram. Soc. 0002-7820 10.1111/j.1151-2916.1985. tb11534.x 68, C-285 (1985).
-
J. Adam and M. D. Rodgers, Acta Crystallogr. 12, 951 (1959) 0365-110X; R. E. Hann, P. R. Suttch, and J. L. Pentecost, J. Am. Ceram. Soc. 0002-7820 10.1111/j.1151-2916.1985.tb11534.x 68, C-285 (1985).
-
(1959)
Acta Crystallogr.
, vol.12
, pp. 951
-
-
Adam, J.1
Rodgers, M.D.2
Hann, R.E.3
Suttch, P.R.4
Pentecost, J.L.5
-
14
-
-
57349182072
-
-
We confirmed that the 96-atom supercell is sufficiently large. The formation energy of [MgHf (VO3) 2] +2, which is the largest defect in our calculations, is changed only by 0.08 eV as extending cell size from 72-atom to the 96-atom supercell.
-
We confirmed that the 96-atom supercell is sufficiently large. The formation energy of [MgHf (VO3) 2] +2, which is the largest defect in our calculations, is changed only by 0.08 eV as extending cell size from 72-atom to the 96-atom supercell.
-
-
-
-
15
-
-
57349085491
-
-
The computational band ga(3.9 eV) underestimates the experimental value [5.7 eV (Ref.)] due to the common problem of LDA. Our conclusion, however, is not significantly affected by this issue because all the thermodynamic transition levels are energetically far distant from the conduction band minimum (Fig.) and the corresponding wave functions are well localized at the defect sites (not shown).
-
The computational band gap (3.9 eV) underestimates the experimental value [5.7 eV (Ref.)] due to the common problem of LDA. Our conclusion, however, is not significantly affected by this issue because all the thermodynamic transition levels are energetically far distant from the conduction band minimum (Fig.) and the corresponding wave functions are well localized at the defect sites (not shown).
-
-
-
-
18
-
-
36849049734
-
-
0163-1829 10.1103/PhysRevB.76.214101.
-
A. Peles and C. G. Van de Walle, Phys. Rev. B 0163-1829 10.1103/PhysRevB.76.214101 76, 214101 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 214101
-
-
Peles, A.1
Van De Walle, C.G.2
-
19
-
-
0037096520
-
-
0163-1829 10.1103/PhysRevB.65.233106.
-
X. Zhao and D. Vanderbilt, Phys. Rev. B 0163-1829 10.1103/PhysRevB.65. 233106 65, 233106 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 233106
-
-
Zhao, X.1
Vanderbilt, D.2
-
20
-
-
51949099185
-
-
0163-1829
-
M. Sato, N. Umezawa, N. Mise, S. Kamiyama, M. Kadoshima, T. Morooka, T. Adachi, T. Chikyow, K. Yamabe, K. Shiraishi, S. Miyazaki, A. Uedono, K. Yamada, T. Aoyama, T. Eimori, Y. Nara, and Y. Ohji, Dig. Tech. Pap.-Symp. VLSI Technol. 2008, 66. 0163-1829
-
Dig. Tech. Pap. - Symp. VLSI Technol.
, vol.2008
, pp. 66
-
-
Sato, M.1
Umezawa, N.2
Mise, N.3
Kamiyama, S.4
Kadoshima, M.5
Morooka, T.6
Adachi, T.7
Chikyow, T.8
Yamabe, K.9
Shiraishi, K.10
Miyazaki, S.11
Uedono, A.12
Yamada, K.13
Aoyama, T.14
Eimori, T.15
Nara, Y.16
Ohji, Y.17
|