메뉴 건너뛰기




Volumn 21, Issue 9, 2008, Pages 1344-1362

Boosting random subspace method

Author keywords

Boosting; Classification; Ensemble of classifiers; Random subspace method

Indexed keywords

CLASSIFIERS; CONTENT BASED RETRIEVAL; FACE RECOGNITION; RANDOM PROCESSES;

EID: 54449084620     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2007.12.046     Document Type: Article
Times cited : (66)

References (45)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36 1-2 (1999) 105-142
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Machine Learning 24 1 (1996) 49-64
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 54449091010 scopus 로고    scopus 로고
    • Breiman, L. (1996c) Bias, variance, and arcing classifiers, Tech. Rep. 460, Berkeley, CA: Department of Statistics, University of California
    • Breiman, L. (1996c) Bias, variance, and arcing classifiers, Tech. Rep. 460, Berkeley, CA: Department of Statistics, University of California
  • 5
  • 6
    • 54449100357 scopus 로고    scopus 로고
    • Chang, C. -C., & Lin, C. -J. (2001) LIBSVM: Library for support vector machines. software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • Chang, C. -C., & Lin, C. -J. (2001) LIBSVM: Library for support vector machines. software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
  • 7
    • 0000291808 scopus 로고    scopus 로고
    • Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification
    • Chen K., Wang L., and Chi H. Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification. Journal of Pattern Recognition and Artificial Intelligence 11 3 (1997) 417-445
    • (1997) Journal of Pattern Recognition and Artificial Intelligence , vol.11 , Issue.3 , pp. 417-445
    • Chen, K.1    Wang, L.2    Chi, H.3
  • 8
    • 54449099223 scopus 로고    scopus 로고
    • Cherkauer, K. (1996) Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Working notes of the aaai workshop on integrating multiple learned models (pp. 15-21)
    • Cherkauer, K. (1996) Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Working notes of the aaai workshop on integrating multiple learned models (pp. 15-21)
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 11
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 7 (1998) 1895-1923
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 14
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40 (2000) 139-157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 15
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 (2004) 255-273
    • (2004) Machine Learning , vol.54 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 17
    • 0141921552 scopus 로고    scopus 로고
    • Online ensemble learning: An empirical study
    • Fern A., and Givan R. Online ensemble learning: An empirical study. Machine Learning 53 (2003) 71-109
    • (2003) Machine Learning , vol.53 , pp. 71-109
    • Fern, A.1    Givan, R.2
  • 18
    • 54449088752 scopus 로고    scopus 로고
    • Freund, Y., & Schapire, R. (1996) Experiments with a new boosting algorithm, In Proc. of the thirteenth international conference on machine learning (pp. 148-156)
    • Freund, Y., & Schapire, R. (1996) Experiments with a new boosting algorithm, In Proc. of the thirteenth international conference on machine learning (pp. 148-156)
  • 19
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics 11 (1940) 86-92
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 20
    • 54449093214 scopus 로고    scopus 로고
    • García-Pedrajas, N. (2007) Supervised projection approach for boosting classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence (submitted for publication)
    • García-Pedrajas, N. (2007) Supervised projection approach for boosting classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence (submitted for publication)
  • 23
    • 78149349523 scopus 로고    scopus 로고
    • Hall, L., Bowyer, K., Banfield, R., Bhadoria, D., Kegelmeyer, W., & Eschrich, S. (2003) Comparing pure parallel ensemble creation techniques against bagging. In Third IEEE international conference on data mining (pp. 533-536)
    • Hall, L., Bowyer, K., Banfield, R., Bhadoria, D., Kegelmeyer, W., & Eschrich, S. (2003) Comparing pure parallel ensemble creation techniques against bagging. In Third IEEE international conference on data mining (pp. 533-536)
  • 24
    • 54449094985 scopus 로고    scopus 로고
    • Hettich, S., Blake, C., & Merz, C. (1998) UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html
    • Hettich, S., Blake, C., & Merz, C. (1998) UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html
  • 26
    • 0001750957 scopus 로고
    • Approximations of the critical regions of the friedman statistic
    • Iman R.L., and Davenport J.M. Approximations of the critical regions of the friedman statistic. Communications in Statistics 6 (1980) 571-595
    • (1980) Communications in Statistics , vol.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 27
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with a gaussian kernel
    • Keerthi S.S., and Lin C.-J. Asymptotic behaviors of support vector machines with a gaussian kernel. Neural Computation 15 (2003) 1667-1689
    • (2003) Neural Computation , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 30
    • 0348151971 scopus 로고    scopus 로고
    • Combining classifiers: Soft computing solutions
    • Pal S.K., and Pal A. (Eds), World Scientific
    • Kuncheva L.I. Combining classifiers: Soft computing solutions. In: Pal S.K., and Pal A. (Eds). Pattern recognition: From classical to modern approaches (2001), World Scientific 427-451
    • (2001) Pattern recognition: From classical to modern approaches , pp. 427-451
    • Kuncheva, L.I.1
  • 32
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz C.J. Using correspondence analysis to combine classifiers. Machine Learning 36 1 (1999) 33-58
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 33-58
    • Merz, C.J.1
  • 33
    • 54449095217 scopus 로고    scopus 로고
    • Munro, R., Ler, D., & Patrick, J. (2003) Meta-learning orthographic and contextual models for language independent named entity recognition. In Proceedings of the seventh conference on natural language learning (pp. 192-195)
    • Munro, R., Ler, D., & Patrick, J. (2003) Meta-learning orthographic and contextual models for language independent named entity recognition. In Proceedings of the seventh conference on natural language learning (pp. 192-195)
  • 37
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D., and McClelland J. (Eds), MIT Press, Cambridge, MA
    • Rumelhart D., Hinton G., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D., and McClelland J. (Eds). Parallel distributed processing (1986), MIT Press, Cambridge, MA 318-362
    • (1986) Parallel distributed processing , pp. 318-362
    • Rumelhart, D.1    Hinton, G.2    Williams, R.J.3
  • 38
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire R.E., Freund Y., Bartlett P.L., and Lee W.S. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics 26 5 (1998) 1651-1686
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 39
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire R.E., and Singer Y. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37 (1999) 297-336
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 40
    • 84957007471 scopus 로고    scopus 로고
    • Skurichina, M., & Duin, R. P. W. (2001) Bagging and the random subspace method for redundant feature spaces, In J. Kittler, R. Poli (Eds.), Proceedings of the second international workshop on multiple classifier systems MCS 2001 (pp. 1-10)
    • Skurichina, M., & Duin, R. P. W. (2001) Bagging and the random subspace method for redundant feature spaces, In J. Kittler, R. Poli (Eds.), Proceedings of the second international workshop on multiple classifier systems MCS 2001 (pp. 1-10)
  • 42
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-bases relevance feedback in image retrieval
    • Tao D., Tang X., Li X., and Wu X. Asymmetric bagging and random subspace for support vector machines-bases relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 7 (2006) 1088-1099
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 43
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifier
    • Tumer K., and Ghosh J. Error correlation and error reduction in ensemble classifier. Connection Science 8 3-4 (1996) 385-404
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 44
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Webb G.I. Multiboosting: A technique for combining boosting and wagging. Machine Learning 40 2 (2000) 159-196
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 45
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1 (1945) 80-83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.