-
1
-
-
0011932271
-
-
2nd ed, Loupy, A, Ed, Wiley-VCH:Weinheim, Germany
-
(a) Microwaves in Organic Synthesis, 2nd ed.; Loupy, A., Ed.; Wiley-VCH:Weinheim, Germany, 2006.
-
(2006)
Microwaves in Organic Synthesis
-
-
-
3
-
-
11144325118
-
-
and references cited therein
-
(a) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250, and references cited therein,
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 6250
-
-
Kappe, C.O.1
-
10
-
-
33846949921
-
-
2nd ed, Loupy, A, Ed, Wiley-VCH: Weinheim, Germany, Chapter 4, pp
-
(b) Perreux, L.; Loupy, A. In Microwaves in Organic Synthesis, 2nd ed.; Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006; Chapter 4, pp 134-218.
-
(2006)
Microwaves in Organic Synthesis
, pp. 134-218
-
-
Perreux, L.1
Loupy, A.2
-
11
-
-
14644427257
-
-
(c) De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc Rev. 2005, 34, 164.
-
(2005)
Chem. Soc Rev
, vol.34
, pp. 164
-
-
De La Hoz, A.1
Diaz-Ortiz, A.2
Moreno, A.3
-
12
-
-
35348823905
-
-
For some recent examples, see: a
-
For some recent examples, see: (a) Dressen, M. H. C. L.; van de Kruijs, B. H. P.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. Org. Process Res. Dev. 2007, 11, 865.
-
(2007)
Org. Process Res. Dev
, vol.11
, pp. 865
-
-
Dressen, M.H.C.L.1
van de Kruijs, B.H.P.2
Meuldijk, J.3
Vekemans, J.A.J.M.4
Hulshof, L.A.5
-
14
-
-
34447298389
-
-
(c) Young, D. D.; Deiters, A. Angew. Chem., Int. Ed. 2007, 46, 5187.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 5187
-
-
Young, D.D.1
Deiters, A.2
-
16
-
-
50149101285
-
-
For a more detailed definition and examples for thermal, specific, and nonthermal microwave effects, see: (a) Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, Germany, 2005; Chapter 2, pp 9-28. See also refs 2a and 3.
-
For a more detailed definition and examples for thermal, specific, and nonthermal microwave effects, see: (a) Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, Germany, 2005; Chapter 2, pp 9-28. See also refs 2a and 3.
-
-
-
-
17
-
-
50149085284
-
-
Hayes, B. L.; Collins, M. J., Jr. World Patent 2004, WO 04002617.
-
(a) Hayes, B. L.; Collins, M. J., Jr. World Patent 2004, WO 04002617.
-
-
-
-
19
-
-
33646450914
-
-
(a) Singh, B. K.; Appukkuttan, P.; Claerhout, S.; Parmar, V. S.; Van der Eycken, E. Org. Lett. 2006, 8, 1863.
-
(2006)
Org. Lett
, vol.8
, pp. 1863
-
-
Singh, B.K.1
Appukkuttan, P.2
Claerhout, S.3
Parmar, V.S.4
Van der Eycken, E.5
-
20
-
-
33745683813
-
-
(b) Appukkuttan, P.; Husain, M.; Gupta, R. K.; Parmar, V. S.; Van der Eycken, E. Synlett 2006, 1491.
-
(2006)
Synlett
, pp. 1491
-
-
Appukkuttan, P.1
Husain, M.2
Gupta, R.K.3
Parmar, V.S.4
Van der Eycken, E.5
-
21
-
-
34548370671
-
-
(c) Singh, B.; Mehta, V. P.; Parmar, V. S.; Van der Eycken, E. Org. Biomol Chem. 2007, 5, 2962.
-
(2007)
Org. Biomol Chem
, vol.5
, pp. 2962
-
-
Singh, B.1
Mehta, V.P.2
Parmar, V.S.3
Van der Eycken, E.4
-
23
-
-
33744803711
-
-
(b) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. T. Chem. Eur. J. 2006, 12, 4407.
-
(2006)
Chem. Eur. J
, vol.12
, pp. 4407
-
-
Baxendale, I.R.1
Griffiths-Jones, C.M.2
Ley, S.V.3
Tranmer, G.T.4
-
25
-
-
14844346398
-
-
(a) Leadbeater, N. E.; Pillsbury, S. J.; Shanahan. E.; Williams, V. A. Tetrahedron 2005, 61, 3565.
-
(2005)
Tetrahedron
, vol.61
, pp. 3565
-
-
Leadbeater, N.E.1
Pillsbury, S.J.2
Shanahan, E.3
Williams, V.A.4
-
28
-
-
33846986839
-
-
Hosseini, M.; Stiasni, N.; Barbieri, V.; Kappe, C. O. J. Org. Chem. 2007, 72, 1417.
-
(2007)
J. Org. Chem
, vol.72
, pp. 1417
-
-
Hosseini, M.1
Stiasni, N.2
Barbieri, V.3
Kappe, C.O.4
-
29
-
-
37549015931
-
-
Herrero, M. A.; Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2008, 73, 36.
-
(2008)
J. Org. Chem
, vol.73
, pp. 36
-
-
Herrero, M.A.1
Kremsner, J.M.2
Kappe, C.O.3
-
31
-
-
34047205297
-
-
Kremsner, J. M.; Stadler, A.; Kappe, C. O. J. Comb. Chem. 2007, 9, 285.
-
(2007)
J. Comb. Chem
, vol.9
, pp. 285
-
-
Kremsner, J.M.1
Stadler, A.2
Kappe, C.O.3
-
32
-
-
39049155967
-
-
Geuens, J.; Kremsner, J. M.; Nebel, B. A.; Schober, S.; Dommisse, R. A.; Mittelbach, M.; Tavernier, S.; Kappe, C. O.; Maes, B. U. W. Energy Fuels 2008, 22, 643.
-
(2008)
Energy Fuels
, vol.22
, pp. 643
-
-
Geuens, J.1
Kremsner, J.M.2
Nebel, B.A.3
Schober, S.4
Dommisse, R.A.5
Mittelbach, M.6
Tavernier, S.7
Kappe, C.O.8
Maes, B.U.W.9
-
34
-
-
50149092837
-
-
The ability of a specific solvent to convert microwave energy into heat at a given frequency and temperature is determined by the so-called loss tangent (tan δ, expressed as the quotient, tan δ, ε″/ ε′. A reaction medium with a high tan δ at the standard operating frequency of a microwave synthesis reactor (2.45 GHz) is required for good absorption and, consequently, for efficient heating. Solvents used for microwave synthesis can be classified as high (tan δ > 0.5, medium (tan δ 0.1-0.5, and low microwave absorbing tan δ < 0.1, See refs 1 and 2 for more details
-
The ability of a specific solvent to convert microwave energy into heat at a given frequency and temperature is determined by the so-called loss tangent (tan δ), expressed as the quotient, tan δ = ε″/ ε′. A reaction medium with a high tan δ at the standard operating frequency of a microwave synthesis reactor (2.45 GHz) is required for good absorption and, consequently, for efficient heating. Solvents used for microwave synthesis can be classified as high (tan δ > 0.5), medium (tan δ 0.1-0.5), and low microwave absorbing (tan δ < 0.1). See refs 1 and 2 for more details.
-
-
-
-
35
-
-
34547564123
-
-
Moseley, J. D.; Lenden, P.; Thomson, A. D.; Gilday, J. P. Tetrahedron Lett. 2007, 48, 6084.
-
(2007)
Tetrahedron Lett
, vol.48
, pp. 6084
-
-
Moseley, J.D.1
Lenden, P.2
Thomson, A.D.3
Gilday, J.P.4
-
36
-
-
50149096148
-
-
This is achieved by using the instrument setting very high absorbing or high absorbing on the Biotage Initiator 2.0 model. For other instruments, the microwave output power can be manually adjusted to the desired level. Using higher power settings in some cases led to temperature overshoots and to a deformation of the Teflon-coated stir bars at the SiC cylinder contact surface indicating temperatures >270°C at the SiC surface. SiC is known to be a very strong microwave absorbing material:(a) Meredith, R. Engineers' Handbook of Industrial Microwave Heating; The Institution of Electrical Engineers: Stevenege, U.K, 1998
-
This is achieved by using the instrument setting "very high absorbing" or "high absorbing" on the Biotage Initiator 2.0 model. For other instruments, the microwave output power can be manually adjusted to the desired level. Using higher power settings in some cases led to temperature overshoots and to a deformation of the Teflon-coated stir bars at the SiC cylinder contact surface indicating temperatures >270°C at the SiC surface. SiC is known to be a very strong microwave absorbing material:(a) Meredith, R. Engineers' Handbook of Industrial Microwave Heating; The Institution of Electrical Engineers: Stevenege, U.K., 1998.
-
-
-
-
38
-
-
0011899071
-
-
Moore, G. G.; Foglia, T. A.; McGahan, T. J. J. Org. Chem. 1979, 44, 2425.
-
(1979)
J. Org. Chem
, vol.44
, pp. 2425
-
-
Moore, G.G.1
Foglia, T.A.2
McGahan, T.J.3
-
39
-
-
3042682172
-
-
For microwave-assisted esterifications of 2,4,6-trimethylbenzoic acid, see: a
-
For microwave-assisted esterifications of 2,4,6-trimethylbenzoic acid, see: (a) Wilson, N. S.; Sarko, C. R.; Roth, G. P. Org. Process Res. Dev. 2004, 8, 535.
-
(2004)
Org. Process Res. Dev
, vol.8
, pp. 535
-
-
Wilson, N.S.1
Sarko, C.R.2
Roth, G.P.3
-
40
-
-
33751158531
-
-
(b) Cablewski, T.; Faux, A. F.; Strauss, C. R. J. Org. Chem. 1994, 59, 3408.
-
(1994)
J. Org. Chem
, vol.59
, pp. 3408
-
-
Cablewski, T.1
Faux, A.F.2
Strauss, C.R.3
-
44
-
-
0032330265
-
-
(b) Gabriel, C.; Gabriel, S.; Grant, E. H.; Halstead, B. S.; Mingos, D. M. P. Chem. Soc. Rev. 1998, 27, 213.
-
(1998)
Chem. Soc. Rev
, vol.27
, pp. 213
-
-
Gabriel, C.1
Gabriel, S.2
Grant, E.H.3
Halstead, B.S.4
Mingos, D.M.P.5
-
45
-
-
0037467688
-
-
(a) Bogdal, D.; Lukasiewicz, M.; Pielichowski, J.; Miciak, A.; Bednarz, S. Tetrahedron 2003, 59, 649.
-
(2003)
Tetrahedron
, vol.59
, pp. 649
-
-
Bogdal, D.1
Lukasiewicz, M.2
Pielichowski, J.3
Miciak, A.4
Bednarz, S.5
-
46
-
-
1642473958
-
-
(b) Lukasiewicz, M.; Bogdal, D.; Pielichowski, J. Adv. Synth. Catal. 2003, 345, 1269.
-
(2003)
Adv. Synth. Catal
, vol.345
, pp. 1269
-
-
Lukasiewicz, M.1
Bogdal, D.2
Pielichowski, J.3
-
47
-
-
50149097729
-
-
The commonly used borosilicate microwave reaction vials used in single-mode reactors do absorb a significant amount of microwave energy (borosilicate: tan δ 10 × 10-4) as compared to quartz reaction vessels (quartz: tan δ 0.6 × 10-4, a) Bogdal, D, Prociak, A. Microwave-Enhanced Polymer Chemistry and Technology; Blackwell Publishing: Oxford, UK, 2007
-
-4). (a) Bogdal, D.; Prociak, A. Microwave-Enhanced Polymer Chemistry and Technology; Blackwell Publishing: Oxford, UK, 2007.
-
-
-
-
48
-
-
27944511332
-
-
and references cited therein
-
Desai, B.; Kappe, C. O. Top. Curr. Chem. 2004, 242, 177, and references cited therein.
-
(2004)
Top. Curr. Chem
, vol.242
, pp. 177
-
-
Desai, B.1
Kappe, C.O.2
-
49
-
-
41949099721
-
-
and references therein
-
Mennecke, K.; Cecilia, R.; Glasnov, T. N.; Gruhl, S.; Vogt, C.; Feldhoff, A.; Vargas, M. A. L.; Kappe, C. O.; Kunz, U.; Kirschning, A. Adv. Synth. Catal. 2008, 350, 717, and references therein.
-
(2008)
Adv. Synth. Catal
, vol.350
, pp. 717
-
-
Mennecke, K.1
Cecilia, R.2
Glasnov, T.N.3
Gruhl, S.4
Vogt, C.5
Feldhoff, A.6
Vargas, M.A.L.7
Kappe, C.O.8
Kunz, U.9
Kirschning, A.10
-
50
-
-
0141922655
-
-
Stadler, A.; Yousefi, B. H.; Dallinger, D.; Walla, P.; Van der Eycken, E.; Kaval, N.; Kappe, C. O. Org. Process Res. Dev. 2003, 7, 707.
-
(2003)
Org. Process Res. Dev
, vol.7
, pp. 707
-
-
Stadler, A.1
Yousefi, B.H.2
Dallinger, D.3
Walla, P.4
Van der Eycken, E.5
Kaval, N.6
Kappe, C.O.7
-
51
-
-
0037006237
-
-
Köhler, K.; Heidenreich, R. G.; Krauter, J. G.; Pietsch, J.Chem. Eur. J. 2002, 8, 622.
-
(2002)
J.Chem. Eur. J
, vol.8
, pp. 622
-
-
Köhler, K.1
Heidenreich, R.G.2
Krauter, J.G.3
Pietsch4
-
53
-
-
0034675558
-
-
(a) Kaiser, N.-F. K.; Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. Angew. Chem., Int. Ed. 2000, 39, 3596.
-
(2000)
Angew. Chem., Int. Ed
, vol.39
, pp. 3596
-
-
Kaiser, N.-F.K.1
Bremberg, U.2
Larhed, M.3
Moberg, C.4
Hallberg, A.5
-
54
-
-
0242491848
-
-
(b) Garbacia, S.; Desai, B.; Lavastre, O.; Kappe, C. O. J. Org. Chem. 2003, 68, 9136.
-
(2003)
J. Org. Chem
, vol.68
, pp. 9136
-
-
Garbacia, S.1
Desai, B.2
Lavastre, O.3
Kappe, C.O.4
-
56
-
-
33845763974
-
-
McNulty, J.; Nair, J. J.; Cheekoori, S.; Larichev, V.; Capretta, A.; Robertson, A. J. Chem. Eur. J. 2006, 12, 9314.
-
(2006)
Chem. Eur. J
, vol.12
, pp. 9314
-
-
McNulty, J.1
Nair, J.J.2
Cheekoori, S.3
Larichev, V.4
Capretta, A.5
Robertson, A.J.6
-
57
-
-
0035018550
-
-
(a) Lensen, N.; Mouelhi, S.; Bellassoued, M. Synth. Commun. 2001, 31, 1007.
-
(2001)
Synth. Commun
, vol.31
, pp. 1007
-
-
Lensen, N.1
Mouelhi, S.2
Bellassoued, M.3
-
58
-
-
0026777948
-
-
Kuno, A.; Sugiyama, Y.; Katsuta, K.; Kamitani, T.; Takasugi, H. Chem. Pharm. Bull. 1992, 40, 1452.
-
(1992)
Chem. Pharm. Bull
, vol.40
, pp. 1452
-
-
Kuno, A.1
Sugiyama, Y.2
Katsuta, K.3
Kamitani, T.4
Takasugi, H.5
|