-
1
-
-
21744447389
-
-
(a) Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, R. Tetrahedron Lett. 1986, 27, 279.
-
(1986)
Tetrahedron Lett
, vol.27
, pp. 279
-
-
Gedye, R.1
Smith, F.2
Westaway, K.3
Ali, H.4
Baldisera, L.5
Laberge, L.6
Rousell, R.7
-
2
-
-
40949144305
-
-
(b) Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Lett. 1986, 27, 4945.
-
(1986)
Tetrahedron Lett
, vol.27
, pp. 4945
-
-
Giguere, R.J.1
Bray, T.L.2
Duncan, S.M.3
Majetich, G.4
-
3
-
-
0011932271
-
-
Loupy, A, Ed, Wiley-VCH: Weinheim, Germany
-
(a) Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2002.
-
(2002)
Microwaves in Organic Synthesis
-
-
-
5
-
-
0141878086
-
-
Lidström, P, Tierney, J. P, Eds, Blackwell Publishing: Oxford, U.K
-
(c) Microwave-Assisted Organic Synthesis; Lidström, P., Tierney, J. P., Eds.; Blackwell Publishing: Oxford, U.K., 2005.
-
(2005)
Microwave-Assisted Organic Synthesis
-
-
-
7
-
-
0011932271
-
-
2nd ed, Loupy, A, Ed, Wiley-VCH: Weinheim, Germany
-
(e) Microwaves in Organic Synthesis, 2nd ed.; Loupy, A., Ed.; Wiley-VCH: Weinheim, Germany, 2006.
-
(2006)
Microwaves in Organic Synthesis
-
-
-
8
-
-
34047199638
-
-
Larhed, M, Olofsson, K, Ed, Springer: Berlin
-
(f) Microwave Methods in Organic Synthesis; Larhed, M., Olofsson, K., Ed.; Springer: Berlin, 2006.
-
(2006)
Microwave Methods in Organic Synthesis
-
-
-
11
-
-
14644427257
-
-
(a) De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 164.
-
(2005)
Chem. Soc. Rev
, vol.34
, pp. 164
-
-
De La Hoz, A.1
Diaz-Ortiz, A.2
Moreno, A.3
-
16
-
-
0037085575
-
-
(b) Wathey, B.; Tierney, J.; Lidström, P.; Westman, J. Drug Discovery Today 2002, 7, 373.
-
(2002)
Drug Discovery Today
, vol.7
, pp. 373
-
-
Wathey, B.1
Tierney, J.2
Lidström, P.3
Westman, J.4
-
17
-
-
1542752259
-
-
(c) Al-Obeidi, F.; Austin, R. E.; Okonya, J. F.; Bond, D. R. S. Mini-Rev. Med. Chem. 2003, 3, 449.
-
(2003)
Mini-Rev. Med. Chem
, vol.3
, pp. 449
-
-
Al-Obeidi, F.1
Austin, R.E.2
Okonya, J.F.3
Bond, D.R.S.4
-
18
-
-
21744441328
-
-
(d) Shipe, W. D.; Wolkenberg, S. E.; Lindsley, C. W. Drug Discovery Today: Technol. 2005, 2, 155.
-
(2005)
Drug Discovery Today: Technol
, vol.2
, pp. 155
-
-
Shipe, W.D.1
Wolkenberg, S.E.2
Lindsley, C.W.3
-
20
-
-
0001260317
-
-
Kappe, C. O.; Stadler, A. J. Comb. Chem. 2001, 3, 624. An Emrys Synthesizer (Biotage AB) was used in this work. Other automated microwave systems for sequential processing include the CEM Navigator (www.cem.com) and the Chemspeed SWAVE (www.chemspeed.com).
-
Kappe, C. O.; Stadler, A. J. Comb. Chem. 2001, 3, 624. An Emrys Synthesizer (Biotage AB) was used in this work. Other automated microwave systems for sequential processing include the CEM Navigator (www.cem.com) and the Chemspeed SWAVE (www.chemspeed.com).
-
-
-
-
21
-
-
0032485313
-
-
Cotterill, I. C.; Usyatinsky, A. Ya.; Arnold, J. M.; Clark, D. S.; Dordick, J. S.; Michels, P. C.; Khmelnitsky, Y. L. Tetrahedron Lett. 1998, 39, 1117.
-
(1998)
Tetrahedron Lett
, vol.39
, pp. 1117
-
-
Cotterill, I.C.1
Usyatinsky, A.Y.2
Arnold, J.M.3
Clark, D.S.4
Dordick, J.S.5
Michels, P.C.6
Khmelnitsky, Y.L.7
-
22
-
-
0006039686
-
-
Sucholeiki, I, Ed, Marcel Dekker, Inc, New York, Chapter 4.6, pp
-
Glass, B. M.; Combs, A. P. In High-Throughput Synthesis. Principles and Practices; Sucholeiki, I., Ed.; Marcel Dekker, Inc.: New York, 2001; Chapter 4.6, pp 123-128.
-
(2001)
High-Throughput Synthesis. Principles and Practices
, pp. 123-128
-
-
Glass, B.M.1
Combs, A.P.2
-
23
-
-
0141878086
-
-
Lidström, P, Tierney, J. P, Ed, Blackwell Publishing: Oxford, U.K
-
Sarko, C. R. In Microwave-Assisted Organic Synthesis; Lidström, P., Tierney, J. P., Ed.; Blackwell Publishing: Oxford, U.K., 2005; pp 222-236.
-
(2005)
Microwave-Assisted Organic Synthesis
, pp. 222-236
-
-
Sarko, C.R.1
-
26
-
-
34047207929
-
-
CombiCHEM module/MicroSYNTH Labstation (Milestone srl., www.milestonesci.com). Other, open vessel microtiter plate systems for multimode microwave reactors are available from CEM Corp. (www.cem.com).
-
CombiCHEM module/MicroSYNTH Labstation (Milestone srl., www.milestonesci.com). Other, open vessel microtiter plate systems for multimode microwave reactors are available from CEM Corp. (www.cem.com).
-
-
-
-
28
-
-
31544433452
-
-
(b) Macleod, C.; Martinez-Teipel, B. I.; Barker, W. M.; Dolle, R. E. J. Comb. Chem. 2006, 8, 132.
-
(2006)
J. Comb. Chem
, vol.8
, pp. 132
-
-
Macleod, C.1
Martinez-Teipel, B.I.2
Barker, W.M.3
Dolle, R.E.4
-
29
-
-
12344249618
-
-
(c) Martinez-Teipel, B.; Greene, R. C.; Dolle, R. E. QSAR Comb. Sci. 2004, 23, 854.
-
(2004)
QSAR Comb. Sci
, vol.23
, pp. 854
-
-
Martinez-Teipel, B.1
Greene, R.C.2
Dolle, R.E.3
-
30
-
-
1642456650
-
-
(d) Campiglia, P.; Gomez-Monterrey, I.; Longobardo, L.; Lama, T.; Novellino, E.; Grieco, P. Tetrahedron Lett. 2004, 45, 1453.
-
(2004)
Tetrahedron Lett
, vol.45
, pp. 1453
-
-
Campiglia, P.1
Gomez-Monterrey, I.2
Longobardo, L.3
Lama, T.4
Novellino, E.5
Grieco, P.6
-
32
-
-
0242408216
-
-
(f) Grieco, P.; Campiglia, P.; Gomez-Monterrey, I.; Lama, T.; Novellino, E. Synlett 2003, 2216.
-
(2003)
Synlett
, pp. 2216
-
-
Grieco, P.1
Campiglia, P.2
Gomez-Monterrey, I.3
Lama, T.4
Novellino, E.5
-
33
-
-
34047214705
-
-
For a description of an in-house microtiter plate developed by
-
For a description of an in-house microtiter plate developed by Boehringer Ingelheim, which is made out of fully microwave-transparent material (HTPE plate, Teflon-lined capmat, HTPE lid, nylon bolts, and wingnuts) with a pressure-rating of 10 bars, see ref. 9.
-
Ingelheim, which is made out of fully microwave-transparent material (HTPE plate, Teflon-lined capmat, HTPE lid, nylon bolts, and wingnuts) with a pressure-rating of 10 bars
-
-
Boehringer1
-
35
-
-
0003597031
-
-
Harris, G. L, Ed, Institute of Electrical Engineers: London
-
(a) Properties of Silicon Carbide; Harris, G. L., Ed.; Institute of Electrical Engineers: London, 1995.
-
(1995)
Properties of Silicon Carbide
-
-
-
36
-
-
18844459488
-
-
Choyke, W. J, Matsunami, H, Pensl, G, Ed, Springer: Berlin
-
(b) Silicon Carbide: Recent Major Advances; Choyke, W. J., Matsunami, H., Pensl, G., Ed.; Springer: Berlin, 2004.
-
(2004)
Silicon Carbide: Recent Major Advances
-
-
-
37
-
-
27744465954
-
-
Saddow, S. E, Agarwal, A, Ed, Artech House Inc, Norwood, MA
-
(c) Advances in Silicon Carbide Processing and Applications; Saddow, S. E., Agarwal, A, Ed.; Artech House Inc.: Norwood, MA, 2004.
-
(2004)
Advances in Silicon Carbide Processing and Applications
-
-
-
38
-
-
34047210761
-
-
Employing metal components in the microwave field without any arcing is possible, as long as all parts are in perfect electrical contact to each other. Sparks and arcing are only caused if a difference of the electrical potential between two individual metal parts occurs. Fixing the top plate with the steel bolts builds up the electrical contact to the base and the entire assembly is equipotential. Thus, no arcing will occur, and the assembly can safely be used in the microwave cavity
-
Employing metal components in the microwave field without any arcing is possible, as long as all parts are in perfect electrical contact to each other. Sparks and arcing are only caused if a difference of the electrical potential between two individual metal parts occurs. Fixing the top plate with the steel bolts builds up the electrical contact to the base and the entire assembly is equipotential. Thus, no arcing will occur, and the assembly can safely be used in the microwave cavity.
-
-
-
-
40
-
-
34047208315
-
-
This is also true for microtiter plates designed for microwave synthesis that are made out of strongly microwave-absorbing polymeric materials such as carbon-doped Teflon see refs 12 and 13
-
This is also true for microtiter plates designed for microwave synthesis that are made out of strongly microwave-absorbing polymeric materials such as carbon-doped Teflon (see refs 12 and 13).
-
-
-
-
41
-
-
34047199099
-
-
The ability of a specific solvent to convert microwave energy into heat at a given frequency and temperature is determined by the so-called loss tangent (tan δ, expressed as the quotient tan δ= ε″/ ε′. A reaction medium with a high tan δ at the standard operating frequency of a microwave synthesis reactor (2.45 GHz) is required for good absorption and, consequently, for efficient heating. Solvents used for microwave synthesis can be classified as high (tan δ > 0.5, medium (tan δ 0.1-0.5, and low microwave absorbing tan δ < 0.1, Microwave synthesis in low-absorbing solvents is often not feasible, unless either the substrates or some of the reagents/catalysts are strongly polar and therefore microwave absorbing
-
The ability of a specific solvent to convert microwave energy into heat at a given frequency and temperature is determined by the so-called loss tangent (tan δ), expressed as the quotient tan δ= ε″/ ε′. A reaction medium with a high tan δ at the standard operating frequency of a microwave synthesis reactor (2.45 GHz) is required for good absorption and, consequently, for efficient heating. Solvents used for microwave synthesis can be classified as high (tan δ > 0.5), medium (tan δ 0.1-0.5), and low microwave absorbing (tan δ < 0.1). Microwave synthesis in low-absorbing solvents is often not feasible, unless either the substrates or some of the reagents/catalysts are strongly polar and therefore microwave absorbing.
-
-
-
-
43
-
-
0141922655
-
-
Stadler, A.; Yousefi, B. H.; Dallinger, D.; Walla, P.; Van der Eycken, E.; Kaval, N.; Kappe, C. O. Org. Process Res. Dev. 2003, 7, 707-716.
-
(2003)
Org. Process Res. Dev
, vol.7
, pp. 707-716
-
-
Stadler, A.1
Yousefi, B.H.2
Dallinger, D.3
Walla, P.4
Van der Eycken, E.5
Kaval, N.6
Kappe, C.O.7
|