메뉴 건너뛰기




Volumn 36, Issue 2, 2008, Pages 489-531

Statistical performance of support vector machines

Author keywords

Classification; Model selection; Oracle inequality; Support vector machine

Indexed keywords


EID: 48849115978     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053607000000839     Document Type: Article
Times cited : (105)

References (42)
  • 1
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • MR1481318
    • ALON, N., BEN-DAVID, S., CESA- BIANCHI, N. and HAUSSLER, D. (1997). Scale-sensitive dimensions, uniform convergence, and learnability. J. ACM 44 615-631. MR1481318
    • (1997) J. ACM , vol.44 , pp. 615-631
    • ALON, N.1    BEN-DAVID, S.2    CESA- BIANCHI, N.3    HAUSSLER, D.4
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • MR1607706
    • BARTLETT, P. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. Inform. Theory 44 525-536. MR1607706
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
    • BARTLETT, P.1
  • 3
    • 26444592981 scopus 로고    scopus 로고
    • Local Rademacher complexities
    • MR2166554
    • BARTLETT, P., BOUSQUET, O. and MENDELSON, S. (2005). Local Rademacher complexities. Ann. Statist. 33 1497-1537. MR2166554
    • (2005) Ann. Statist , vol.33 , pp. 1497-1537
    • BARTLETT, P.1    BOUSQUET, O.2    MENDELSON, S.3
  • 4
    • 33645505792 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • MR2268032
    • BARTLETT, P., JORDAN, M. and MCA ULIFFE, J. (2006). Convexity, classification, and risk bounds. J. Amer. Statist. Assoc. 101 138-156. MR2268032
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 138-156
    • BARTLETT, P.1    JORDAN, M.2    MCA3    ULIFFE, J.4
  • 5
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • MR1984026
    • BARTLETT, P. and MENDELSON, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. J. Machine Learning Research 3 463-482. MR1984026
    • (2002) J. Machine Learning Research , vol.3 , pp. 463-482
    • BARTLETT, P.1    MENDELSON, S.2
  • 8
    • 33847676413 scopus 로고    scopus 로고
    • Statistical properties of kernel principal component analysis
    • BLANCHARD, G., BOUSQUET. O. and ZWALD, L. (2007). Statistical properties of kernel principal component analysis. Machine Learning 66 259-294.
    • (2007) Machine Learning , vol.66 , pp. 259-294
    • BLANCHARD, G.1    BOUSQUET, O.2    ZWALD, L.3
  • 9
    • 3042675892 scopus 로고    scopus 로고
    • On the rate of convergence of regularized boosting classifiers
    • MR2076000
    • BLANCHARD, G., LUGOSI, G. and VAYATIS, N. (2003). On the rate of convergence of regularized boosting classifiers. J. Machine Learning Research 4 861-894. MR2076000
    • (2003) J. Machine Learning Research , vol.4 , pp. 861-894
    • BLANCHARD, G.1    LUGOSI, G.2    VAYATIS, N.3
  • 10
    • 0037561860 scopus 로고    scopus 로고
    • A Bennett concentration inequality and its application to suprema of empirical processes
    • MR1890640
    • BOUSQUET, O. (2002). A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Acad. Sci. Paris Ser. I 334 495-500. MR1890640
    • (2002) C. R. Acad. Sci. Paris Ser. I , vol.334 , pp. 495-500
    • BOUSQUET, O.1
  • 12
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • MR2248013
    • CHEN, D.-R., WU, Q., YING, Y. and ZHOU, D.-X. (2004). Support vector machine soft margin classifiers: Error analysis. J. Machine Learning Research 5 1143-1175. MR2248013
    • (2004) J. Machine Learning Research , vol.5 , pp. 1143-1175
    • CHEN, D.-R.1    WU, Q.2    YING, Y.3    ZHOU, D.-X.4
  • 14
    • 51049088261 scopus 로고    scopus 로고
    • EDMUNDS, D. E. and TRIEBEL, H. (1996). Function Spaces, Entropy Numbers, Differential Operators. Cambridge Univ. Press. MR 1410258
    • EDMUNDS, D. E. and TRIEBEL, H. (1996). Function Spaces, Entropy Numbers, Differential Operators. Cambridge Univ. Press. MR 1410258
  • 15
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • MR 1759187
    • EVGENIOU, T., PONTIL, M. and POGGIO, T. (2000). Regularization networks and support vector machines. Adv. Comput. Math. 13 1-50. MR 1759187
    • (2000) Adv. Comput. Math , vol.13 , pp. 1-50
    • EVGENIOU, T.1    PONTIL, M.2    POGGIO, T.3
  • 16
    • 33746194045 scopus 로고    scopus 로고
    • Local Rademacher complexities and oracle inequalities in risk minimization
    • MR2329442
    • KOLTCHINKSII, V. (2006). Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Statist. 34 2593-2656. MR2329442
    • (2006) Ann. Statist , vol.34 , pp. 2593-2656
    • KOLTCHINKSII, V.1
  • 17
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • MR 1892654
    • KOLTCHINSKII, V. and PANCHENKO, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statist. 30 1-50. MR 1892654
    • (2002) Ann. Statist , vol.30 , pp. 1-50
    • KOLTCHINSKII, V.1    PANCHENKO, D.2
  • 18
    • 48849097549 scopus 로고    scopus 로고
    • Simultaneous adaptation to the margin and to complexity in classification
    • LECUÉ, G. (2007). Simultaneous adaptation to the margin and to complexity in classification. Ann. Statist. 35 1698-1721.
    • (2007) Ann. Statist , vol.35 , pp. 1698-1721
    • LECUÉ, G.1
  • 19
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • MR1917926
    • LIN, Y. (2002). Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery 6 259-275. MR1917926
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • LIN, Y.1
  • 20
    • 23744490659 scopus 로고    scopus 로고
    • Complexity regularization via localized random penalties
    • MR2089138
    • LUGOSI, G. and WEGKAMP, M. (2004). Complexity regularization via localized random penalties. Ann. Statist. 32 1679-1697. MR2089138
    • (2004) Ann. Statist , vol.32 , pp. 1679-1697
    • LUGOSI, G.1    WEGKAMP, M.2
  • 21
    • 0034345597 scopus 로고    scopus 로고
    • About the constants in Talagrand's inequality for empirical processes
    • MR1782276
    • MASSART, P. (2000). About the constants in Talagrand's inequality for empirical processes. Ann. Probab. 28 863-884. MR1782276
    • (2000) Ann. Probab , vol.28 , pp. 863-884
    • MASSART, P.1
  • 22
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities in statistics
    • MR 1813803
    • MASSART, P. (2000). Some applications of concentration inequalities in statistics. Ann. Fac. Sci. Toulouse Math. 9 245-303. MR 1813803
    • (2000) Ann. Fac. Sci. Toulouse Math , vol.9 , pp. 245-303
    • MASSART, P.1
  • 23
    • 33746243474 scopus 로고    scopus 로고
    • Risk bounds for statistical learning
    • MR2291502
    • MASSART, P. and NÉDELEC, E. (2006). Risk bounds for statistical learning. Ann. Statist. 34 2326-2366. MR2291502
    • (2006) Ann. Statist , vol.34 , pp. 2326-2366
    • MASSART, P.1    NÉDELEC, E.2
  • 24
    • 51049111505 scopus 로고    scopus 로고
    • MASSART, P. (2007). Concentration Inequalities and Model Selection. Lectures on Probability Theory and Statistics. Ecole d' Été de Probabilités de Saint-Flour XXXIII - 2003. Lecture Notes in Math. 1896. Springer, Berlin. MR2319879
    • MASSART, P. (2007). Concentration Inequalities and Model Selection. Lectures on Probability Theory and Statistics. Ecole d' Été de Probabilités de Saint-Flour XXXIII - 2003. Lecture Notes in Math. 1896. Springer, Berlin. MR2319879
  • 25
    • 3142722249 scopus 로고    scopus 로고
    • Estimating the performance of kernel classes
    • MR2075996
    • MENDELSON, S. (2003). Estimating the performance of kernel classes. J. Machine Learning Research 4 759-771. MR2075996
    • (2003) J. Machine Learning Research , vol.4 , pp. 759-771
    • MENDELSON, S.1
  • 27
    • 0035441827 scopus 로고    scopus 로고
    • Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
    • MR 1873936
    • SCHOLKOPF, B., SMOLA, A. J. and WILLIAMSON, R. C. (2001). Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Trans. Inform. Theory 47 2516-2532. MR 1873936
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 2516-2532
    • SCHOLKOPF, B.1    SMOLA, A.J.2    WILLIAMSON, R.C.3
  • 28
    • 22844440983 scopus 로고    scopus 로고
    • On the eigenspectrum of the Gram matrix and the generalisation error of kernel PCA
    • MR2246374
    • SHAWE-TAYLOR, J., WILLIAMS. C., CRISTIANINI, N. and KANDOLA, J. (2005). On the eigenspectrum of the Gram matrix and the generalisation error of kernel PCA. IEEE Trans. Inform. Theory 51 2510-2522. MR2246374
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 2510-2522
    • SHAWE-TAYLOR, J.1    WILLIAMS, C.2    CRISTIANINI, N.3    KANDOLA, J.4
  • 30
    • 84879910175 scopus 로고    scopus 로고
    • From regularization operators to support vector kernels
    • M. I. Jordan. M. J. Kearns and S. A. Solla, eds, MIT Press
    • SMOLA, A. and SCHÖLKOPF, B. (1998). From regularization operators to support vector kernels. In Advances in Neural Information Processings Systems 10 (M. I. Jordan. M. J. Kearns and S. A. Solla, eds.) 343-349. MIT Press.
    • (1998) Advances in Neural Information Processings Systems 10 , pp. 343-349
    • SMOLA, A.1    SCHÖLKOPF, B.2
  • 31
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • MR 1928806
    • STEINWART, I. (2002). Support vector machines are universally consistent. J. Complexity 18 768-791. MR 1928806
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • STEINWART, I.1
  • 32
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using Gaussian kernels
    • MR2336860
    • STEINWART, I. and SCOVEL, C. (2007). Fast rates for support vector machines using Gaussian kernels. Ann. Statist. 35 575-607. MR2336860
    • (2007) Ann. Statist , vol.35 , pp. 575-607
    • STEINWART, I.1    SCOVEL, C.2
  • 33
    • 51049122462 scopus 로고    scopus 로고
    • A new concentration result for regularized risk minimizers
    • STEINWART. I., HUSH, D. and SCOVEL, C. (2006). A new concentration result for regularized risk minimizers. In High-Dimensional ProbabilityIV260-275.
    • (2006) High-Dimensional Probability , vol.4 , pp. 260-275
    • STEINWART, I.1    HUSH, D.2    SCOVEL, C.3
  • 34
    • 51049105130 scopus 로고    scopus 로고
    • IMS Lecture Notes Monograph Series
    • IMS Lecture Notes Monograph Series 51.
    • , vol.51
  • 36
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • MR2051002
    • TSYBAKOV, A. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135-166. MR2051002
    • (2004) Ann. Statist , vol.32 , pp. 135-166
    • TSYBAKOV, A.1
  • 37
    • 23744505130 scopus 로고    scopus 로고
    • Square root penalty: Adaptation to the margin in classification and in edge estimation
    • MR2195633
    • TSYBAKOV, A. and VAN DE GEER, S. (2005). Square root penalty: Adaptation to the margin in classification and in edge estimation. Ann. Statist. 33 1203-1224. MR2195633
    • (2005) Ann. Statist , vol.33 , pp. 1203-1224
    • TSYBAKOV, A.1    VAN DE GEER, S.2
  • 38
    • 51049109506 scopus 로고    scopus 로고
    • VAPNIK, V. (1998). Statistical Learning Theory: Wiley, New York. MR1641250
    • VAPNIK, V. (1998). Statistical Learning Theory: Wiley, New York. MR1641250
  • 39
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • VAPNIK, V. and CHERVONENKIS, A. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16 264-280.
    • (1971) Theory Probab. Appl , vol.16 , pp. 264-280
    • VAPNIK, V.1    CHERVONENKIS, A.2
  • 40
    • 0033321586 scopus 로고    scopus 로고
    • Minimax nonparametric classification. I. Rates of convergence
    • MR1725115
    • YANG, Y. (1999). Minimax nonparametric classification. I. Rates of convergence. IEEE Trans. Inform. Theory 45 2271-2284. MR1725115
    • (1999) IEEE Trans. Inform. Theory , vol.45 , pp. 2271-2284
    • YANG, Y.1
  • 41
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • MR2051001
    • ZHANG, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 56-85. MR2051001
    • (2004) Ann. Statist , vol.32 , pp. 56-85
    • ZHANG, T.1
  • 42
    • 0038105204 scopus 로고    scopus 로고
    • ZHOU. D.-X. (2003). Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory491743-1752. MR1985575
    • ZHOU. D.-X. (2003). Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory491743-1752. MR1985575


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.