메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Learning from examples as an inverse problem

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL OPERATORS; PROBABILITY; THEOREM PROVING;

EID: 21844447610     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (208)

References (44)
  • 1
    • 0031176507 scopus 로고    scopus 로고
    • Scale sensitive dimensions, uniform convergence, and learnability
    • N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale sensitive dimensions, uniform convergence, and learnability. Journal of the ACM, 44:615-631, 1997.
    • (1997) Journal of the ACM , vol.44 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 3
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337-404, 1950.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 5
    • 0001176372 scopus 로고
    • Linear inverse problems with discrete data. I. General formulation and singular system analysis
    • M. Bertero, C. De Mol, and E. R. Pike. Linear inverse problems with discrete data. I. General formulation and singular system analysis. Inverse Problems, 1(4):301-330, 1985.
    • (1985) Inverse Problems , vol.1 , Issue.4 , pp. 301-330
    • Bertero, M.1    De Mol, C.2    Pike, E.R.3
  • 6
    • 0000198196 scopus 로고
    • Linear inverse problems with discrete data. II. Stability and regularisation
    • M. Bertero, C. De Mol, and E. R. Pike. Linear inverse problems with discrete data. II. Stability and regularisation. Inverse Problems, 4(3):573-594, 1988.
    • (1988) Inverse Problems , vol.4 , Issue.3 , pp. 573-594
    • Bertero, M.1    De Mol, C.2    Pike, E.R.3
  • 8
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • D. Chen, Q. Wu, Y. Ying, and D. Zhou. Support vector machine soft margin classifiers: Error analysis. Journal of Machine Learning research, 5:1143-1175, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1143-1175
    • Chen, D.1    Wu, Q.2    Ying, Y.3    Zhou, D.4
  • 9
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the bias-variance problem. Foundations of Computational Mathematics, 2:413-428, 2002a.
    • (2002) Foundations of Computational Mathematics , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 10
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • electronic
    • F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc. (N.S.), 39(1): 1-49 (electronic), 2002b.
    • (2002) Bull. Amer. Math. Soc. (N.S.) , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 13
    • 0003277393 scopus 로고    scopus 로고
    • Regularization of inverse problems
    • Kluwer Academic Publishers Group, Dordrecht
    • H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.
    • (1996) Mathematics and Its Applications , vol.375
    • Engl, H.W.1    Hanke, M.2    Neubauer, A.3
  • 14
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Adv. Comp. Math., 13:1-50, 2000.
    • (2000) Adv. Comp. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 16
    • 0003368014 scopus 로고
    • The theory of Tikhonov regularization for Fredholm equations of the first kind
    • Pitman (Advanced Publishing Program), Boston, MA
    • C. W. Groetsch. The theory of Tikhonov regularization for Fredholm equations of the first kind, volume 105 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.
    • (1984) Research Notes in Mathematics , vol.105
    • Groetsch, C.W.1
  • 21
    • 18144423627 scopus 로고    scopus 로고
    • Learning from data as an inverse problem
    • J. Antoch, editor, Springer-Verlag
    • V. Kurkova. Learning from data as an inverse problem. In J. Antoch, editor, COMPSTAT2004, pages 1377-1384. Springer-Verlag, 2004.
    • (2004) COMPSTAT2004 , pp. 1377-1384
    • Kurkova, V.1
  • 23
    • 1842515655 scopus 로고    scopus 로고
    • Statistical learning: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
    • Massachusetts Institute of Technology, January revision
    • S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Statistical learning: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Technical Report CBCL Paper 223, Massachusetts Institute of Technology, January revision 2004.
    • (2004) Technical Report CBCL Paper , vol.223
    • Mukherjee, S.1    Niyogi, P.2    Poggio, T.3    Rifkin, R.4
  • 25
    • 0033480745 scopus 로고    scopus 로고
    • Generalization bounds for function approximation from scattered noisy data
    • P. Niyogi and F. Girosi. Generalization bounds for function approximation from scattered noisy data. Adv. Comput. Math., 10:51-80, 1999.
    • (1999) Adv. Comput. Math. , vol.10 , pp. 51-80
    • Niyogi, P.1    Girosi, F.2
  • 26
    • 21844436192 scopus 로고    scopus 로고
    • Regularization by early stopping
    • Computer Sciences Laboratory, RSISE, ANU
    • C.S. Ong and S. Canu. Regularization by early stopping. Technical report, Computer Sciences Laboratory, RSISE, ANU, 2004.
    • (2004) Technical Report
    • Ong, C.S.1    Canu, S.2
  • 27
    • 0000631438 scopus 로고
    • Remarks on inequalities for probabilities of large deviations
    • ISSN 0040-36IX
    • I. F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for probabilities of large deviations. Theory Probab. Appl, 30(1): 143-148, 1985. ISSN 0040-36IX.
    • (1985) Theory Probab. Appl , vol.30 , Issue.1 , pp. 143-148
    • Pinelis, I.F.1    Sakhanenko, A.I.2
  • 28
    • 0042049518 scopus 로고
    • A theory of networks for approximation and learning
    • C. Lau, editor, IEEE Press, Piscataway, N.J.
    • T. Poggio and F. Girosi. A theory of networks for approximation and learning. In C. Lau, editor, Foundation of Neural Networks, pages 91-106. IEEE Press, Piscataway, N.J., 1992.
    • (1992) Foundation of Neural Networks , pp. 91-106
    • Poggio, T.1    Girosi, F.2
  • 29
    • 21844458087 scopus 로고    scopus 로고
    • A different type of convergence for statistical learning algorithms
    • Program in Applied and Computational Mathematics Princeton University
    • C. Rudin. A different type of convergence for statistical learning algorithms. Technical report, Program in Applied and Computational Mathematics Princeton University, 2004.
    • (2004) Technical Report
    • Rudin, C.1
  • 31
    • 51649141644 scopus 로고
    • Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)
    • L. Schwartz. Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Analyse Math., 13:115-256, 1964.
    • (1964) J. Analyse Math. , vol.13 , pp. 115-256
    • Schwartz, L.1
  • 32
  • 33
    • 21844480011 scopus 로고    scopus 로고
    • Online learning algorithms
    • Toyota Technological Institute, Chicago
    • S. Smale and Yao Y Online learning algorithms. Technical report, Toyota Technological Institute, Chicago, 2004.
    • (2004) Technical Report
    • Smale, S.1    Yao, Y.2
  • 34
    • 0141480502 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale and D. Zhou. Estimating the approximation error in learning theory. Analysis and Applications, 1(1): 1-25, 2003.
    • (2003) Analysis and Applications , vol.1 , Issue.1 , pp. 1-25
    • Smale, S.1    Zhou, D.2
  • 35
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • electronic
    • S. Smale and D. Zhou. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. (N.S.), 41(3):279-305 (electronic), 2004a.
    • (2004) Bull. Amer. Math. Soc. (N.S.) , vol.41 , Issue.3 , pp. 279-305
    • Smale, S.1    Zhou, D.2
  • 38
    • 21844437252 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel machines
    • accepted on
    • I. Steinwart. Consistency of support vector machines and other regularized kernel machines, accepted on IEEE Transaction on Information Theory, 2004.
    • (2004) IEEE Transaction on Information Theory
    • Steinwart, I.1
  • 39
    • 0344166139 scopus 로고
    • Numerical methods for the solution of ill-posed problems
    • Kluwer Academic Publishers Group, Dordrecht, Translated from the 1990 Russian original by R. A. M. Hoksbergen and revised by the authors
    • A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical methods for the solution of ill-posed problems, volume 328 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1995. Translated from the 1990 Russian original by R. A. M. Hoksbergen and revised by the authors.
    • (1995) Mathematics and Its Applications , vol.328
    • Tikhonov, A.N.1    Goncharsky, A.V.2    Stepanov, V.V.3    Yagola, A.G.4
  • 41
    • 0003991806 scopus 로고    scopus 로고
    • Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons Inc., New York, A Wiley-Interscience Publication
    • V. N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons Inc., New York, 1998. A Wiley-Interscience Publication.
    • (1998) Statistical Learning Theory
    • Vapnik, V.N.1
  • 42
    • 0003241881 scopus 로고
    • Spline models for observational data
    • Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
    • G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.
    • (1990) CBMS-NSF Regional Conference Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 43
    • 0040289741 scopus 로고
    • Sums and Gaussian vectors
    • Springer-Verlag, Berlin
    • V. Yurinsky. Sums and Gaussian vectors, volume 1617 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995.
    • (1995) Lecture Notes in Mathematics , vol.1617
    • Yurinsky, V.1
  • 44
    • 0042879446 scopus 로고    scopus 로고
    • Leave-one-out bounds for kernel methods
    • T. Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 13:1397-1437, 2003.
    • (2003) Neural Computation , vol.13 , pp. 1397-1437
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.