-
1
-
-
0031176507
-
Scale sensitive dimensions, uniform convergence, and learnability
-
N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale sensitive dimensions, uniform convergence, and learnability. Journal of the ACM, 44:615-631, 1997.
-
(1997)
Journal of the ACM
, vol.44
, pp. 615-631
-
-
Alon, N.1
Ben-David, S.2
Cesa-Bianchi, N.3
Haussler, D.4
-
3
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
5
-
-
0001176372
-
Linear inverse problems with discrete data. I. General formulation and singular system analysis
-
M. Bertero, C. De Mol, and E. R. Pike. Linear inverse problems with discrete data. I. General formulation and singular system analysis. Inverse Problems, 1(4):301-330, 1985.
-
(1985)
Inverse Problems
, vol.1
, Issue.4
, pp. 301-330
-
-
Bertero, M.1
De Mol, C.2
Pike, E.R.3
-
6
-
-
0000198196
-
Linear inverse problems with discrete data. II. Stability and regularisation
-
M. Bertero, C. De Mol, and E. R. Pike. Linear inverse problems with discrete data. II. Stability and regularisation. Inverse Problems, 4(3):573-594, 1988.
-
(1988)
Inverse Problems
, vol.4
, Issue.3
, pp. 573-594
-
-
Bertero, M.1
De Mol, C.2
Pike, E.R.3
-
8
-
-
84879394399
-
Support vector machine soft margin classifiers: Error analysis
-
D. Chen, Q. Wu, Y. Ying, and D. Zhou. Support vector machine soft margin classifiers: Error analysis. Journal of Machine Learning research, 5:1143-1175, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1143-1175
-
-
Chen, D.1
Wu, Q.2
Ying, Y.3
Zhou, D.4
-
9
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the bias-variance problem. Foundations of Computational Mathematics, 2:413-428, 2002a.
-
(2002)
Foundations of Computational Mathematics
, vol.2
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
10
-
-
0036071370
-
On the mathematical foundations of learning
-
electronic
-
F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc. (N.S.), 39(1): 1-49 (electronic), 2002b.
-
(2002)
Bull. Amer. Math. Soc. (N.S.)
, vol.39
, Issue.1
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
13
-
-
0003277393
-
Regularization of inverse problems
-
Kluwer Academic Publishers Group, Dordrecht
-
H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.
-
(1996)
Mathematics and Its Applications
, vol.375
-
-
Engl, H.W.1
Hanke, M.2
Neubauer, A.3
-
14
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Adv. Comp. Math., 13:1-50, 2000.
-
(2000)
Adv. Comp. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
16
-
-
0003368014
-
The theory of Tikhonov regularization for Fredholm equations of the first kind
-
Pitman (Advanced Publishing Program), Boston, MA
-
C. W. Groetsch. The theory of Tikhonov regularization for Fredholm equations of the first kind, volume 105 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.
-
(1984)
Research Notes in Mathematics
, vol.105
-
-
Groetsch, C.W.1
-
17
-
-
0003624357
-
-
Springer Series in Statistics, New York, 1996
-
M. Györfi, L.and Kohler, A. Krzyzak, and H. Walk. A Distribution-free Theory of Non-parametric Regression. Springer Series in Statistics, New York, 1996, 1996.
-
(1996)
A Distribution-free Theory of Non-parametric Regression
-
-
Györfi, M.1
Kohler, L.2
Krzyzak, A.3
Walk, H.4
-
21
-
-
18144423627
-
Learning from data as an inverse problem
-
J. Antoch, editor, Springer-Verlag
-
V. Kurkova. Learning from data as an inverse problem. In J. Antoch, editor, COMPSTAT2004, pages 1377-1384. Springer-Verlag, 2004.
-
(2004)
COMPSTAT2004
, pp. 1377-1384
-
-
Kurkova, V.1
-
23
-
-
1842515655
-
Statistical learning: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
-
Massachusetts Institute of Technology, January revision
-
S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Statistical learning: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Technical Report CBCL Paper 223, Massachusetts Institute of Technology, January revision 2004.
-
(2004)
Technical Report CBCL Paper
, vol.223
-
-
Mukherjee, S.1
Niyogi, P.2
Poggio, T.3
Rifkin, R.4
-
24
-
-
17444401898
-
Regression and classification with regularization
-
S. Mukherjee, R. Rifkin, and T. Poggio. Regression and classification with regularization. Lectures Notes in Statistics: Nonlinear Estimation and Classification, Proceedings from MSRI Workshop, 171:107-124, 2002.
-
(2002)
Lectures Notes in Statistics: Nonlinear Estimation and Classification, Proceedings from MSRI Workshop
, vol.171
, pp. 107-124
-
-
Mukherjee, S.1
Rifkin, R.2
Poggio, T.3
-
25
-
-
0033480745
-
Generalization bounds for function approximation from scattered noisy data
-
P. Niyogi and F. Girosi. Generalization bounds for function approximation from scattered noisy data. Adv. Comput. Math., 10:51-80, 1999.
-
(1999)
Adv. Comput. Math.
, vol.10
, pp. 51-80
-
-
Niyogi, P.1
Girosi, F.2
-
26
-
-
21844436192
-
Regularization by early stopping
-
Computer Sciences Laboratory, RSISE, ANU
-
C.S. Ong and S. Canu. Regularization by early stopping. Technical report, Computer Sciences Laboratory, RSISE, ANU, 2004.
-
(2004)
Technical Report
-
-
Ong, C.S.1
Canu, S.2
-
27
-
-
0000631438
-
Remarks on inequalities for probabilities of large deviations
-
ISSN 0040-36IX
-
I. F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for probabilities of large deviations. Theory Probab. Appl, 30(1): 143-148, 1985. ISSN 0040-36IX.
-
(1985)
Theory Probab. Appl
, vol.30
, Issue.1
, pp. 143-148
-
-
Pinelis, I.F.1
Sakhanenko, A.I.2
-
28
-
-
0042049518
-
A theory of networks for approximation and learning
-
C. Lau, editor, IEEE Press, Piscataway, N.J.
-
T. Poggio and F. Girosi. A theory of networks for approximation and learning. In C. Lau, editor, Foundation of Neural Networks, pages 91-106. IEEE Press, Piscataway, N.J., 1992.
-
(1992)
Foundation of Neural Networks
, pp. 91-106
-
-
Poggio, T.1
Girosi, F.2
-
29
-
-
21844458087
-
A different type of convergence for statistical learning algorithms
-
Program in Applied and Computational Mathematics Princeton University
-
C. Rudin. A different type of convergence for statistical learning algorithms. Technical report, Program in Applied and Computational Mathematics Princeton University, 2004.
-
(2004)
Technical Report
-
-
Rudin, C.1
-
31
-
-
51649141644
-
Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants)
-
L. Schwartz. Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Analyse Math., 13:115-256, 1964.
-
(1964)
J. Analyse Math.
, vol.13
, pp. 115-256
-
-
Schwartz, L.1
-
33
-
-
21844480011
-
Online learning algorithms
-
Toyota Technological Institute, Chicago
-
S. Smale and Yao Y Online learning algorithms. Technical report, Toyota Technological Institute, Chicago, 2004.
-
(2004)
Technical Report
-
-
Smale, S.1
Yao, Y.2
-
34
-
-
0141480502
-
Estimating the approximation error in learning theory
-
S. Smale and D. Zhou. Estimating the approximation error in learning theory. Analysis and Applications, 1(1): 1-25, 2003.
-
(2003)
Analysis and Applications
, vol.1
, Issue.1
, pp. 1-25
-
-
Smale, S.1
Zhou, D.2
-
35
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
electronic
-
S. Smale and D. Zhou. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. (N.S.), 41(3):279-305 (electronic), 2004a.
-
(2004)
Bull. Amer. Math. Soc. (N.S.)
, vol.41
, Issue.3
, pp. 279-305
-
-
Smale, S.1
Zhou, D.2
-
38
-
-
21844437252
-
Consistency of support vector machines and other regularized kernel machines
-
accepted on
-
I. Steinwart. Consistency of support vector machines and other regularized kernel machines, accepted on IEEE Transaction on Information Theory, 2004.
-
(2004)
IEEE Transaction on Information Theory
-
-
Steinwart, I.1
-
39
-
-
0344166139
-
Numerical methods for the solution of ill-posed problems
-
Kluwer Academic Publishers Group, Dordrecht, Translated from the 1990 Russian original by R. A. M. Hoksbergen and revised by the authors
-
A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical methods for the solution of ill-posed problems, volume 328 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1995. Translated from the 1990 Russian original by R. A. M. Hoksbergen and revised by the authors.
-
(1995)
Mathematics and Its Applications
, vol.328
-
-
Tikhonov, A.N.1
Goncharsky, A.V.2
Stepanov, V.V.3
Yagola, A.G.4
-
41
-
-
0003991806
-
-
Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons Inc., New York, A Wiley-Interscience Publication
-
V. N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons Inc., New York, 1998. A Wiley-Interscience Publication.
-
(1998)
Statistical Learning Theory
-
-
Vapnik, V.N.1
-
42
-
-
0003241881
-
Spline models for observational data
-
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
-
G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.
-
(1990)
CBMS-NSF Regional Conference Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
43
-
-
0040289741
-
Sums and Gaussian vectors
-
Springer-Verlag, Berlin
-
V. Yurinsky. Sums and Gaussian vectors, volume 1617 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995.
-
(1995)
Lecture Notes in Mathematics
, vol.1617
-
-
Yurinsky, V.1
-
44
-
-
0042879446
-
Leave-one-out bounds for kernel methods
-
T. Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 13:1397-1437, 2003.
-
(2003)
Neural Computation
, vol.13
, pp. 1397-1437
-
-
Zhang, T.1
|