메뉴 건너뛰기




Volumn 12, Issue 6, 2006, Pages 1045-1076

Classifiers of support vector machine type with ℓ1complexity regularization

Author keywords

Binary classification; Hinge loss; Margin; Oracle inequality; Penalized classification rule; Sparsity

Indexed keywords


EID: 34250697375     PISSN: 13507265     EISSN: None     Source Type: Journal    
DOI: 10.3150/bj/1165269150     Document Type: Article
Times cited : (53)

References (36)
  • 1
    • 34248393050 scopus 로고    scopus 로고
    • Classification under polynomial entropy and margin assumptions and randomized estimators. Preprint PMA-908
    • Audibert, J.-Y. (2004) Classification under polynomial entropy and margin assumptions and randomized estimators. Preprint PMA-908, Laboratoire de Probabilites et Modeles Aleatoires. www.proba.jussieu.fr/mathdoc/textes/PMA-908.pdf
    • (2004) Laboratoire De Probabilites Et Modeles Aleatoires
    • Audibert, J.-Y.1
  • 3
    • 3042675892 scopus 로고    scopus 로고
    • On the rate of convergence of regularized boosting classifiers
    • Blanchard, G., Lugosi, G. and Vayatis, N. (2003) On the rate of convergence of regularized boosting classifiers. J. Mach. Learn. Res., 4, 861-894.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 861-894
    • Blanchard, G.1    Lugosi, G.2    Vayatis, N.3
  • 6
    • 2442458882 scopus 로고    scopus 로고
    • New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities
    • 2singularities. Comm. Pure Appl. Math., 57, 219-266.
    • (2004) Comm. Pure Appl. Math. , vol.57 , pp. 219-266
    • Candes, E.J.1    Donoho, D.L.2
  • 7
    • 0029307534 scopus 로고
    • Denoising via soft-thresholding
    • Donoho, D.L. (1995) Denoising via soft-thresholding. IEEE Trans. Inform. Theory, 41, 613-627.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 8
    • 0033248623 scopus 로고    scopus 로고
    • Wedgelets: Nearly minimax estimation of edges
    • Donoho, D.L. (1999) Wedgelets: nearly minimax estimation of edges. Ann. Statist., 27, 859-897.
    • (1999) Ann. Statist. , vol.27 , pp. 859-897
    • Donoho, D.L.1
  • 13
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • Koltchinskii, V. (2001) Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory, 47, 1902-1914.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 1902-1914
    • Koltchinskii, V.1
  • 14
    • 33746194045 scopus 로고    scopus 로고
    • Local Rademacher complexities and oracle inequalities in risk minimization
    • Koltchinskii, V. (2006) Local Rademacher complexities and oracle inequalities in risk minimization. To appear in Ann. Statist., 34(6).
    • (2006) Ann. Statist , vol.34 , Issue.6
    • Koltchinskii, V.1
  • 15
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • Koltchinskii, V. and Panchenko, D. (2002) Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statist., 30, 1-50.
    • (2002) Ann. Statist. , vol.30 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2
  • 16
    • 84996133877 scopus 로고    scopus 로고
    • On Talagrand’s deviation inequalities for product measures
    • Ledoux, M. (1997) On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Statist., 1, 63-87.
    • (1997) ESAIM Probab. Statist. , vol.1 , pp. 63-87
    • Ledoux, M.1
  • 18
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Lin, Y. (2002) Support vector machines and the Bayes rule in classification. Data Min. Knowledge Discovery, 6, 259-275.
    • (2002) Data Min. Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 19
    • 0036872087 scopus 로고    scopus 로고
    • Adaptive estimation in regression, using soft thresholding type penalties
    • Loubes, J.-M. and van de Geer, S. (2002) Adaptive estimation in regression, using soft thresholding type penalties. Statist. Neerlandica, 56, 453-478.
    • (2002) Statist. Neerlandica , vol.56 , pp. 453-478
    • Loubes, J.-M.1    Van De Geer, S.2
  • 20
    • 23744490659 scopus 로고    scopus 로고
    • Complexity regularization via localized random penalties
    • Lugosi, G. and Wegkamp, M. (2004) Complexity regularization via localized random penalties. Ann. Statist., 32, 1679-1697.
    • (2004) Ann. Statist. , vol.32 , pp. 1679-1697
    • Lugosi, G.1    Wegkamp, M.2
  • 21
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • Mammen, E. and Tsybakov, A.B. (1999) Smooth discrimination analysis. Ann. Statist., 27, 1808-1829.
    • (1999) Ann. Statist. , vol.27 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.B.2
  • 22
    • 0034345597 scopus 로고    scopus 로고
    • About the constants in Talagrand’s concentration inequalities for empirical processes
    • Massart, P. (2000) About the constants in Talagrand’s concentration inequalities for empirical processes. Ann. Probab., 28, 863-884.
    • (2000) Ann. Probab. , vol.28 , pp. 863-884
    • Massart, P.1
  • 24
    • 33645724205 scopus 로고    scopus 로고
    • Minimax-optimal classification with dyadic decision trees
    • Scott, C. and Nowak, R. (2006) Minimax-optimal classification with dyadic decision trees. IEEE Trans. Inform. Theory, 52, 1335-1353.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1335-1353
    • Scott, C.1    Nowak, R.2
  • 27
    • 33847717627 scopus 로고    scopus 로고
    • Technical report MI 2004-14, University of Leiden
    • 1penalty. Technical report MI 2004-14, University of Leiden. http://www.stat.math.ethz.ch/∼geer/reports.html
    • (2004) 1Penalty.
    • Tarigan, B.1    Van De Geer, S.A.2
  • 28
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B, 58, 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • Tsybakov, A.B. (2004) Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32, 135-166.
    • (2004) Ann. Statist. , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 30
    • 23744505130 scopus 로고    scopus 로고
    • Square root penalty: Adaptation to the margin in classification and in edge estimation
    • Tsybakov, A.B. and van de Geer, S.A. (2005) Square root penalty: adaptation to the margin in classification and in edge estimation. Ann. Statist., 33, 1203-1224.
    • (2005) Ann. Statist. , vol.33 , pp. 1203-1224
    • Tsybakov, A.B.1    Van De Geer, S.A.2
  • 32
    • 23744510605 scopus 로고    scopus 로고
    • Adaptive quantile regression
    • M.G. Akritas and D.N. Politis, Amsterdam: Elsevier
    • van de Geer, S. (2003) Adaptive quantile regression. In M.G. Akritas and D.N. Politis (eds), Recent Advances and Trends in Nonparametric Statistics, pp. 235-250. Amsterdam: Elsevier.
    • (2003) Recent Advances and Trends in Nonparametric Statistics , pp. 235-250
    • Van De Geer, S.1
  • 35
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behaviour and consistency of classification methods based on convex risk minimization
    • Zhang, T. (2004) Statistical behaviour and consistency of classification methods based on convex risk minimization. Ann. Statist., 32, 56-84.
    • (2004) Ann. Statist. , vol.32 , pp. 56-84
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.