-
1
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958;65:386-408.
-
(1958)
Psychol Rev
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
2
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533-6.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
3
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Boston, MA: Kluver Academic Publishers;
-
Burges CJ. A tutorial on support vector machines for pattern recognition. Data Mining Knowledge Discovery, vol 2. Boston, MA: Kluver Academic Publishers; 1998:121-67.
-
(1998)
Data Mining Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.1
-
6
-
-
0039830274
-
Unsupervised learning procedures for neural networks
-
Available at:, Accessed February 14, 2008
-
Becker S. Unsupervised learning procedures for neural networks. Int J Neural Syst 1991;1/2:17-33. Available at: http://www.science. mcmaster.ca/psychology/becker/papers/becker-ijns91.pdf. Accessed February 14, 2008.
-
(1991)
Int J Neural Syst
, vol.1-2
, pp. 17-33
-
-
Becker, S.1
-
7
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43:59-69.
-
(1982)
Biol Cybern
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
8
-
-
67650285423
-
-
Kohonen T. Self-Organizing Maps, 3rd ed. New York: Springer; 2001.
-
Kohonen T. Self-Organizing Maps, 3rd ed. New York: Springer; 2001.
-
-
-
-
9
-
-
0001337304
-
Boosting and other ensemble methods
-
Drucker H, Cortes C, Jackel LD, LeCun Y, Vapnik V. Boosting and other ensemble methods. Neural Comput 1994;6:1289-301.
-
(1994)
Neural Comput
, vol.6
, pp. 1289-1301
-
-
Drucker, H.1
Cortes, C.2
Jackel, L.D.3
LeCun, Y.4
Vapnik, V.5
-
10
-
-
0023890867
-
Measuring the accuracy of diagnostic systems
-
Swets JA. Measuring the accuracy of diagnostic systems. Science 1988;240:1285-93.
-
(1988)
Science
, vol.240
, pp. 1285-1293
-
-
Swets, J.A.1
-
11
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A non-parametric approach
-
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a non-parametric approach. Biometrics 1988;44:837-45.
-
(1988)
Biometrics
, vol.44
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
12
-
-
24544438679
-
Discrimination of normal and glaucomatous visual fields by neural network
-
Goldbaum MH, Sample PA, White H,Weinreb RN. Discrimination of normal and glaucomatous visual fields by neural network. Invest Ophthalmol Vis Sci 1990;31(suppl):503.
-
(1990)
Invest Ophthalmol Vis Sci
, vol.31
, Issue.SUPPL.
, pp. 503
-
-
Goldbaum, M.H.1
Sample, P.A.2
White, H.3
Weinreb, R.N.4
-
13
-
-
0028135264
-
Interpretation of automated perimetry for glaucoma by neural network
-
Goldbaum MH, Sample PA, White H, Colt B, Raphaelian P, Fechtner RD, Weinreb RN. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci 1994;35: 3362-73.
-
(1994)
Invest Ophthalmol Vis Sci
, vol.35
, pp. 3362-3373
-
-
Goldbaum, M.H.1
Sample, P.A.2
White, H.3
Colt, B.4
Raphaelian, P.5
Fechtner, R.D.6
Weinreb, R.N.7
-
14
-
-
3442886776
-
A neural network can differentiate glaucoma and optic neuropathy visual fields through pattern recognition
-
Mills RP, Heijl A, eds, Malmo, Sweden, June 17-20, New York: Kugler Publications;
-
Kelman SE, Perell HF, D'Autrechy L, Scott RJ. A neural network can differentiate glaucoma and optic neuropathy visual fields through pattern recognition. In: Mills RP, Heijl A, eds. Perimetry Update 1990/1991: Proceedings of the Sixth International Perimetric Society Meeting, Malmo, Sweden, June 17-20, 1990. New York: Kugler Publications; 1991:287-90.
-
(1990)
Perimetry Update 1990/1991: Proceedings of the Sixth International Perimetric Society Meeting
, pp. 287-290
-
-
Kelman, S.E.1
Perell, H.F.2
D'Autrechy, L.3
Scott, R.J.4
-
15
-
-
3442877515
-
A computer assisted visual field diagnosis system using neural networks
-
Mills RP, Heijl A, eds, Malmo, Sweden, June 17-20, New York: Kugler Publications;
-
Nagata S, Kani K, Sugiyama A. A computer assisted visual field diagnosis system using neural networks. In: Mills RP, Heijl A, eds. Perimetry Update 1990/1991: Proceedings of the Sixth International Perimetric Society Meeting, Malmo, Sweden, June 17-20, 1990. New York: Kugler Publications; 1991:291-5.
-
(1990)
Perimetry Update 1990/1991: Proceedings of the Sixth International Perimetric Society Meeting
, pp. 291-295
-
-
Nagata, S.1
Kani, K.2
Sugiyama, A.3
-
16
-
-
0036138639
-
Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry
-
Goldbaum MH, Sample PA, Chan K, Williams J, Lee TW, Blumenthal E, Girkin CA, Zangwill LM, Bowd C, Sejnowski T, Weinreb RN. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 2002;43:162-9.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 162-169
-
-
Goldbaum, M.H.1
Sample, P.A.2
Chan, K.3
Williams, J.4
Lee, T.W.5
Blumenthal, E.6
Girkin, C.A.7
Zangwill, L.M.8
Bowd, C.9
Sejnowski, T.10
Weinreb, R.N.11
-
17
-
-
84898983832
-
Mixtures of Gaussian processes
-
Leen TK, Dietterich TG, Tresp V, eds, Cambridge, MA: MIT Press;
-
Tresp V. Mixtures of Gaussian processes. In: Leen TK, Dietterich TG, Tresp V, eds. Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press; 2001:654-60.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 654-660
-
-
Tresp, V.1
-
18
-
-
0041641726
-
Committee machines
-
Hu YH, Hwang J-N, eds, Boca Raton, FL: CRC Press;, Chap 3
-
Tresp V. Committee machines. In: Hu YH, Hwang J-N, eds. Handbook of Neural Network Signal Processing. Boca Raton, FL: CRC Press; 2002. Chap 3.
-
(2002)
Handbook of Neural Network Signal Processing
-
-
Tresp, V.1
-
19
-
-
0033071624
-
Neural networks for visual field analysis: How do they compare with other algorithms?
-
Lietman T, Eng J, Katz J, Quigley HA. Neural networks for visual field analysis: how do they compare with other algorithms? J Glaucoma 1999;8:77-80.
-
(1999)
J Glaucoma
, vol.8
, pp. 77-80
-
-
Lietman, T.1
Eng, J.2
Katz, J.3
Quigley, H.A.4
-
20
-
-
0028143590
-
Advanced glaucoma intervention study. 2. Visual field test scoring and reliability
-
Advanced Glaucoma Intervention Study Group
-
Advanced Glaucoma Intervention Study Group. Advanced glaucoma intervention study. 2. Visual field test scoring and reliability. Ophthalmology 1994;101:1445-55.
-
(1994)
Ophthalmology
, vol.101
, pp. 1445-1455
-
-
-
21
-
-
0026714794
-
Intraocular pressure reduction in normal-tension glaucoma patients. The normal tension glaucoma study group
-
Schulzer M. Intraocular pressure reduction in normal-tension glaucoma patients. The normal tension glaucoma study group. Ophthalmology 1992;99:1468-70.
-
(1992)
Ophthalmology
, vol.99
, pp. 1468-1470
-
-
Schulzer, M.1
-
22
-
-
33846321243
-
Trained artificial neural network for glaucoma diagnosis using visual field data: A comparison with conventional algorithms
-
Bizios D, Heijl A, Bengtsson B. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms. J Glaucoma 2007;16:20-8.
-
(2007)
J Glaucoma
, vol.16
, pp. 20-28
-
-
Bizios, D.1
Heijl, A.2
Bengtsson, B.3
-
23
-
-
32944476589
-
Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields
-
Bengtsson B, Bizios D, Heijl A. Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Invest Ophthalmol Vis Sci 2005;46:3730-6.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3730-3736
-
-
Bengtsson, B.1
Bizios, D.2
Heijl, A.3
-
24
-
-
0029973541
-
Spatial classification of glaucomatous visual field loss
-
Henson DB, Spenceley SE, Bull DR. Spatial classification of glaucomatous visual field loss. Br J Ophthalmol 1996;80:526-31.
-
(1996)
Br J Ophthalmol
, vol.80
, pp. 526-531
-
-
Henson, D.B.1
Spenceley, S.E.2
Bull, D.R.3
-
25
-
-
0002445608
-
Frequency distribution in early glaucomatous visual field defects
-
Aulhorn E, Karmeyer H. Frequency distribution in early glaucomatous visual field defects. Doc Ophthalmol Proc Ser 1977;14:75-83.
-
(1977)
Doc Ophthalmol Proc Ser
, vol.14
, pp. 75-83
-
-
Aulhorn, E.1
Karmeyer, H.2
-
26
-
-
3242892323
-
Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects
-
Sample PA, Chan K, Boden C, Lee TW, Blumenthal EZ, Weinreb RN, Bernd A, Pascual J, Hao J, Sejnowski T, Goldbaum MH. Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Invest Opthalmol Vis Sci 2004;45:2596-605.
-
(2004)
Invest Opthalmol Vis Sci
, vol.45
, pp. 2596-2605
-
-
Sample, P.A.1
Chan, K.2
Boden, C.3
Lee, T.W.4
Blumenthal, E.Z.5
Weinreb, R.N.6
Bernd, A.7
Pascual, J.8
Hao, J.9
Sejnowski, T.10
Goldbaum, M.H.11
-
27
-
-
0037848978
-
Variational learning of clusters of undercomplete non-symmetric independent components
-
Chan K, Lee TW, Sejnowski TJ. Variational learning of clusters of undercomplete non-symmetric independent components. J Mach Learn Res 2003;3:99-114.
-
(2003)
J Mach Learn Res
, vol.3
, pp. 99-114
-
-
Chan, K.1
Lee, T.W.2
Sejnowski, T.J.3
-
28
-
-
29944445992
-
Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects
-
Goldbaum MH. Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects. Trans Am Ophthalmol Soc 2005;103:270-80.
-
(2005)
Trans Am Ophthalmol Soc
, vol.103
, pp. 270-280
-
-
Goldbaum, M.H.1
-
29
-
-
32944475991
-
Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects
-
Goldbaum MH, Sample PA, Zhang Z, Chan K, Hao J, Lee TW, Boden C, Bowd C, Bourne R, Zangwill L, Sejnowski T, Spinak D, Weinreb RN. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Invest Ophthalmol Vis Sci 2005;46:3676-83.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3676-3683
-
-
Goldbaum, M.H.1
Sample, P.A.2
Zhang, Z.3
Chan, K.4
Hao, J.5
Lee, T.W.6
Boden, C.7
Bowd, C.8
Bourne, R.9
Zangwill, L.10
Sejnowski, T.11
Spinak, D.12
Weinreb, R.N.13
-
30
-
-
0027178881
-
A back propagation neural network for the classification of visual field data
-
Keating D, Mutlukan E, Evans A, McGarvie J, Damato B. A back propagation neural network for the classification of visual field data. Phys Med Biol 1993;38:1263-70.
-
(1993)
Phys Med Biol
, vol.38
, pp. 1263-1270
-
-
Keating, D.1
Mutlukan, E.2
Evans, A.3
McGarvie, J.4
Damato, B.5
-
31
-
-
0028116524
-
Demonstration of a neural network expert system for recognition of glaucomatous visual field changes
-
Madsen EM, Yolton RL. Demonstration of a neural network expert system for recognition of glaucomatous visual field changes. Mil Med 1994;159:553-7.
-
(1994)
Mil Med
, vol.159
, pp. 553-557
-
-
Madsen, E.M.1
Yolton, R.L.2
-
32
-
-
0028245932
-
Visual field interpretation with a personal computer based neural network
-
Mutlukan E, Keating D. Visual field interpretation with a personal computer based neural network. Eye 1994;8(Pt 3):321-3.
-
(1994)
Eye
, vol.8
, Issue.PART 3
, pp. 321-323
-
-
Mutlukan, E.1
Keating, D.2
-
34
-
-
0036721272
-
Comparison of machine learning and traditional classifiers in glaucoma diagnosis
-
Chan K, Lee TW, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng 2002;49: 963-74.
-
(2002)
IEEE Trans Biomed Eng
, vol.49
, pp. 963-974
-
-
Chan, K.1
Lee, T.W.2
Sample, P.A.3
Goldbaum, M.H.4
Weinreb, R.N.5
Sejnowski, T.J.6
-
35
-
-
67650331711
-
-
Goldbaum MH, Sample PA, Zangwill LM, Bowd C, Boden C, Lee TW, Zhang Z, Hao J, Sejnowski T, Weinreb RN. Probability of glaucoma determined from standard automated perimetry and from optic disc topography using relevance vector machine classifiers [abstract]. Invest Ophthalmol Vis Sci 2004;45:E-Abstract 2137.
-
Goldbaum MH, Sample PA, Zangwill LM, Bowd C, Boden C, Lee TW, Zhang Z, Hao J, Sejnowski T, Weinreb RN. Probability of glaucoma determined from standard automated perimetry and from optic disc topography using relevance vector machine classifiers [abstract]. Invest Ophthalmol Vis Sci 2004;45:E-Abstract 2137.
-
-
-
-
36
-
-
19344369418
-
A spatio-temporal Bayesian network classifier for understanding visual field deterioration
-
Tucker A, Vinciotti V, Liu X, Garway-Heath D. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med 2005;34:163-77.
-
(2005)
Artif Intell Med
, vol.34
, pp. 163-177
-
-
Tucker, A.1
Vinciotti, V.2
Liu, X.3
Garway-Heath, D.4
-
37
-
-
67650297914
-
-
Goldbaum MH, Sample PA, Zhang Z, Boden C, Lee TW, Hao J, Zangwill LM, Putthividhya P, Spinak DJ, Weinreb RN. Learning manifolds transformation for classification of standard automated perimetry [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 3733.
-
Goldbaum MH, Sample PA, Zhang Z, Boden C, Lee TW, Hao J, Zangwill LM, Putthividhya P, Spinak DJ, Weinreb RN. Learning manifolds transformation for classification of standard automated perimetry [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 3733.
-
-
-
-
38
-
-
67650285421
-
Neural network classification of glaucoma using peripapillary nerve fiber thickness measured by scanning laser tomography
-
Dreher AW, Goldbaum MH, Cote BL, Hart WE, Bailey ED. Neural network classification of glaucoma using peripapillary nerve fiber thickness measured by scanning laser tomography. Invest Ophthalmol Vis Sci 1993;34(suppl):763.
-
(1993)
Invest Ophthalmol Vis Sci
, vol.34
, Issue.SUPPL.
, pp. 763
-
-
Dreher, A.W.1
Goldbaum, M.H.2
Cote, B.L.3
Hart, W.E.4
Bailey, E.D.5
-
39
-
-
0029866233
-
Neural networks to identify glaucoma with structural and functional measurements
-
Brigatti L, Hoffman D, Caprioli J. Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol 1996;121:511-21.
-
(1996)
Am J Ophthalmol
, vol.121
, pp. 511-521
-
-
Brigatti, L.1
Hoffman, D.2
Caprioli, J.3
-
40
-
-
0029804465
-
Detection of structural damage from glaucoma with confocal laser image analysis
-
Uchida H, Brigatti L, Caprioli J. Detection of structural damage from glaucoma with confocal laser image analysis. Invest Ophthalmol Vis Sci 1996;37:2393-401.
-
(1996)
Invest Ophthalmol Vis Sci
, vol.37
, pp. 2393-2401
-
-
Uchida, H.1
Brigatti, L.2
Caprioli, J.3
-
41
-
-
11144329005
-
The detection of glaucoma using an artificial neural network
-
Montreal, QC, 20-23 September, Piscataway, NJ: IEEE Press;
-
Parfitt CM, Mikelberg FS, Swindale NV. The detection of glaucoma using an artificial neural network. In: 17th Annual Conference in Engineering in Medicine and Biology Society. Montreal, QC, 20-23 September 1995, vol 1. Piscataway, NJ: IEEE Press; 1995.
-
(1995)
17th Annual Conference in Engineering in Medicine and Biology Society
, vol.1
-
-
Parfitt, C.M.1
Mikelberg, F.S.2
Swindale, N.V.3
-
43
-
-
0036846761
-
Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc
-
Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee TW, Sejnowski TJ, Weinreb RN. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci 2002;43:3444-54.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 3444-3454
-
-
Bowd, C.1
Chan, K.2
Zangwill, L.M.3
Goldbaum, M.H.4
Lee, T.W.5
Sejnowski, T.J.6
Weinreb, R.N.7
-
44
-
-
18244383805
-
Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements
-
Bowd C, Medeiros FA, Zhang Z, Zangwill LM, Hao J, Lee TW, Sejnowski TJ, Weinreb RN, Goldbaum MH. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci 2005;46:1322-9.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 1322-1329
-
-
Bowd, C.1
Medeiros, F.A.2
Zhang, Z.3
Zangwill, L.M.4
Hao, J.5
Lee, T.W.6
Sejnowski, T.J.7
Weinreb, R.N.8
Goldbaum, M.H.9
-
45
-
-
33644673457
-
Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography
-
Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci 2005;46:4121-9.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 4121-4129
-
-
Huang, M.L.1
Chen, H.Y.2
-
46
-
-
33846896731
-
Rule extraction for glaucoma detection with summary data from StratusOCT
-
Huang ML, Chen HY, Lin JC. Rule extraction for glaucoma detection with summary data from StratusOCT. Invest Ophthalmol Vis Sci 2007;48:244-50.
-
(2007)
Invest Ophthalmol Vis Sci
, vol.48
, pp. 244-250
-
-
Huang, M.L.1
Chen, H.Y.2
Lin, J.C.3
-
47
-
-
33644701046
-
Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study
-
Burgansky-Eliash Z, Wollstein G, Chu T, Ramsey JD, Glymour C, Noecker RJ, Ishikawa H, Schuman JS. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci 2005;46:4147-52.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 4147-4152
-
-
Burgansky-Eliash, Z.1
Wollstein, G.2
Chu, T.3
Ramsey, J.D.4
Glymour, C.5
Noecker, R.J.6
Ishikawa, H.7
Schuman, J.S.8
-
49
-
-
0036086669
-
Active feature selection in optic nerve data using support vector machine
-
Honolulu, HI, May 12-17, Piscataway, NJ: IEEE Press;
-
Park JM, Reed J, Zhou Q. Active feature selection in optic nerve data using support vector machine. In: Proceedings of the 2002 International Joint Conference Neural Networks, Honolulu, HI, May 12-17, 2002. Piscataway, NJ: IEEE Press; 2002:1178-82.
-
(2002)
Proceedings of the 2002 International Joint Conference Neural Networks
, pp. 1178-1182
-
-
Park, J.M.1
Reed, J.2
Zhou, Q.3
-
50
-
-
0037211316
-
Bagging tree classifiers for laser scanning images: A data-and simulation-based strategy
-
Hothorn T, Lausen B. Bagging tree classifiers for laser scanning images: a data-and simulation-based strategy. Artif Intell Med 2003; 27:65-79.
-
(2003)
Artif Intell Med
, vol.27
, pp. 65-79
-
-
Hothorn, T.1
Lausen, B.2
-
51
-
-
0141651932
-
New glaucoma classification method based on standard Heidelberg retina tomograph parameters by bagging classification trees
-
Mardin CY, Hothorn T, Peters A, Junemann AG, Nguyen NX, Lausen B. New glaucoma classification method based on standard Heidelberg retina tomograph parameters by bagging classification trees. J Glaucoma 2003;12:340-6.
-
(2003)
J Glaucoma
, vol.12
, pp. 340-346
-
-
Mardin, C.Y.1
Hothorn, T.2
Peters, A.3
Junemann, A.G.4
Nguyen, N.X.5
Lausen, B.6
-
52
-
-
33747595630
-
Statistical and neural net methods for automatic glaucoma diagnosis determination
-
Pluhacek F, Pospisil J. Statistical and neural net methods for automatic glaucoma diagnosis determination. Cent Eur J Phys 2004;2: 12-24.
-
(2004)
Cent Eur J Phys
, vol.2
, pp. 12-24
-
-
Pluhacek, F.1
Pospisil, J.2
-
53
-
-
4344713313
-
Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers
-
Zangwill LM, Chan K, Bowd C, Hao J, Lee TW, Weinreb RN, Sejnowski TJ, Goldbaum MH. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci 2004;45:3144-51.
-
(2004)
Invest Ophthalmol Vis Sci
, vol.45
, pp. 3144-3151
-
-
Zangwill, L.M.1
Chan, K.2
Bowd, C.3
Hao, J.4
Lee, T.W.5
Weinreb, R.N.6
Sejnowski, T.J.7
Goldbaum, M.H.8
-
54
-
-
67650328598
-
-
Lee TW, Hao J, Bowd C, Zhang Z, Putthividhya D, Zangwill LM, Weinreb RN, Goldbaum MH. Learning low dimensional manifold representation of scanning laser polarimetry data from healthy and glaucomatous eyes [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 2529.
-
Lee TW, Hao J, Bowd C, Zhang Z, Putthividhya D, Zangwill LM, Weinreb RN, Goldbaum MH. Learning low dimensional manifold representation of scanning laser polarimetry data from healthy and glaucomatous eyes [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 2529.
-
-
-
-
55
-
-
61449165665
-
Relevance vector machine for combining HRT II and SWAP results for discriminating between healthy and glaucoma eyes
-
Bowd C, Chiou C, Hao J, Racette L, Zangwill LM, Medeiros FA, Lee TW, Weinreb RN, Goldbaum MH, Sample PA. Relevance vector machine for combining HRT II and SWAP results for discriminating between healthy and glaucoma eyes. Acta Ophthalmol Scand 2006; 84:569.
-
(2006)
Acta Ophthalmol Scand
, vol.84
, pp. 569
-
-
Bowd, C.1
Chiou, C.2
Hao, J.3
Racette, L.4
Zangwill, L.M.5
Medeiros, F.A.6
Lee, T.W.7
Weinreb, R.N.8
Goldbaum, M.H.9
Sample, P.A.10
-
56
-
-
33746459739
-
Improving glaucoma diagnosis by the combination of perimetry and HRT measurements
-
Mardin CY, Peters A, Horn F, Junemann AG, Lausen B. Improving glaucoma diagnosis by the combination of perimetry and HRT measurements. J Glaucoma 2006;15:299-305.
-
(2006)
J Glaucoma
, vol.15
, pp. 299-305
-
-
Mardin, C.Y.1
Peters, A.2
Horn, F.3
Junemann, A.G.4
Lausen, B.5
-
57
-
-
39349103568
-
Diagnostic support for glaucoma using retinal images: A hybrid image analysis and data mining approach
-
Yu J, Abidi SS, Artes P, McIntyre A, Heywood M. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach. Stud Health Technol Inform 2005;116: 187-92.
-
(2005)
Stud Health Technol Inform
, vol.116
, pp. 187-192
-
-
Yu, J.1
Abidi, S.S.2
Artes, P.3
McIntyre, A.4
Heywood, M.5
-
58
-
-
41949089226
-
Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes
-
Bowd C, Hao J, Tavares IT, Medeiros FA, Zangwill LM, Lee T-W, Sample PA, Weinreb RN, Goldbaum MH. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci 2008;49:945-53.
-
(2008)
Invest Ophthalmol Vis Sci
, vol.49
, pp. 945-953
-
-
Bowd, C.1
Hao, J.2
Tavares, I.T.3
Medeiros, F.A.4
Zangwill, L.M.5
Lee, T.-W.6
Sample, P.A.7
Weinreb, R.N.8
Goldbaum, M.H.9
-
59
-
-
0030958701
-
Automatic detection of glaucomatous visual field progression with neural networks
-
Brigatti L, Nouri-Mahdavi K, Weitzman M, Caprioli J. Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol 1997;115:725-8.
-
(1997)
Arch Ophthalmol
, vol.115
, pp. 725-728
-
-
Brigatti, L.1
Nouri-Mahdavi, K.2
Weitzman, M.3
Caprioli, J.4
-
60
-
-
0036325049
-
Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields
-
Sample PA, Goldbaum MH, Chan K, Boden C, Lee TW, Vasile C, Boehm AG, SejnowskiT, Johnson CA, Weinreb RN. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci 2002;43:2660-5.
-
(2002)
Invest Ophthalmol Vis Sci
, vol.43
, pp. 2660-2665
-
-
Sample, P.A.1
Goldbaum, M.H.2
Chan, K.3
Boden, C.4
Lee, T.W.5
Vasile, C.6
Boehm, A.G.7
Sejnowski, T.8
Johnson, C.A.9
Weinreb, R.N.10
-
61
-
-
0036323918
-
Structure and function evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP)
-
Johnson CA, Sample PA, Cioffi GA, Liebmann JR, Weinreb RN. Structure and function evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP). Am J Ophthalmol 2002;134:177-85.
-
(2002)
Am J Ophthalmol
, vol.134
, pp. 177-185
-
-
Johnson, C.A.1
Sample, P.A.2
Cioffi, G.A.3
Liebmann, J.R.4
Weinreb, R.N.5
-
62
-
-
29944442558
-
Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields
-
Sample PA, Boden C, Zhang Z, Pascual J, Lee TW, Zangwill LM, Weinreb RN, Crowston JG, Hoffmann EM, Medeiros FA, Sejnowski T, Goldbaum M. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci 2005;46: 3684-92.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 3684-3692
-
-
Sample, P.A.1
Boden, C.2
Zhang, Z.3
Pascual, J.4
Lee, T.W.5
Zangwill, L.M.6
Weinreb, R.N.7
Crowston, J.G.8
Hoffmann, E.M.9
Medeiros, F.A.10
Sejnowski, T.11
Goldbaum, M.12
-
63
-
-
11144305244
-
Patterns of glaucomatous visual field progression identified by three progression criteria
-
Boden C, Blumenthal EZ, Pascual J, McEwan G, Weinreb RN, Medeiros F, Sample PA. Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol 2004;138:1029-36.
-
(2004)
Am J Ophthalmol
, vol.138
, pp. 1029-1036
-
-
Boden, C.1
Blumenthal, E.Z.2
Pascual, J.3
McEwan, G.4
Weinreb, R.N.5
Medeiros, F.6
Sample, P.A.7
-
65
-
-
3142579190
-
Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes
-
Bowd C, Zangwill LM, Medeiros FA, Hao J, Chan K, Lee TW, Sejnowski TJ, Goldbaum MH, Sample PA, Crowston JG, Weinreb RN. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest Ophthalmol Vis Sci 2004;45: 2255-62.
-
(2004)
Invest Ophthalmol Vis Sci
, vol.45
, pp. 2255-2262
-
-
Bowd, C.1
Zangwill, L.M.2
Medeiros, F.A.3
Hao, J.4
Chan, K.5
Lee, T.W.6
Sejnowski, T.J.7
Goldbaum, M.H.8
Sample, P.A.9
Crowston, J.G.10
Weinreb, R.N.11
-
66
-
-
47749112001
-
Machine learning classifiers detect subtle field defects in eyes of HIV individuals
-
Kozak I, Sample PA, Hao J, Freeman WR, Weinreb RN, Lee TW, Goldbaum MH. Machine learning classifiers detect subtle field defects in eyes of HIV individuals. Trans Am Opthalmol Soc 2007;105: 111-8.
-
(2007)
Trans Am Opthalmol Soc
, vol.105
, pp. 111-118
-
-
Kozak, I.1
Sample, P.A.2
Hao, J.3
Freeman, W.R.4
Weinreb, R.N.5
Lee, T.W.6
Goldbaum, M.H.7
|