메뉴 건너뛰기




Volumn 85, Issue 6, 2008, Pages 396-405

Machine learning classifiers in glaucoma

Author keywords

Classification; Diagnosis; Glaucoma; Machine learning; Neural network; Optic disc; Perimetry; Retinal nerve fiber layer

Indexed keywords

CLASSIFICATION; GLAUCOMA; MACHINE LEARNING; OPTIC DISC; PERIMETRY; RETINAL NERVE FIBER LAYER;

EID: 48549083993     PISSN: 10405488     EISSN: None     Source Type: Journal    
DOI: 10.1097/OPX.0b013e3181783ab6     Document Type: Review
Times cited : (32)

References (66)
  • 1
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958;65:386-408.
    • (1958) Psychol Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 2
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533-6.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Boston, MA: Kluver Academic Publishers;
    • Burges CJ. A tutorial on support vector machines for pattern recognition. Data Mining Knowledge Discovery, vol 2. Boston, MA: Kluver Academic Publishers; 1998:121-67.
    • (1998) Data Mining Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 6
    • 0039830274 scopus 로고
    • Unsupervised learning procedures for neural networks
    • Available at:, Accessed February 14, 2008
    • Becker S. Unsupervised learning procedures for neural networks. Int J Neural Syst 1991;1/2:17-33. Available at: http://www.science. mcmaster.ca/psychology/becker/papers/becker-ijns91.pdf. Accessed February 14, 2008.
    • (1991) Int J Neural Syst , vol.1-2 , pp. 17-33
    • Becker, S.1
  • 7
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43:59-69.
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 8
    • 67650285423 scopus 로고    scopus 로고
    • Kohonen T. Self-Organizing Maps, 3rd ed. New York: Springer; 2001.
    • Kohonen T. Self-Organizing Maps, 3rd ed. New York: Springer; 2001.
  • 10
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets JA. Measuring the accuracy of diagnostic systems. Science 1988;240:1285-93.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 11
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A non-parametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a non-parametric approach. Biometrics 1988;44:837-45.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 12
    • 24544438679 scopus 로고
    • Discrimination of normal and glaucomatous visual fields by neural network
    • Goldbaum MH, Sample PA, White H,Weinreb RN. Discrimination of normal and glaucomatous visual fields by neural network. Invest Ophthalmol Vis Sci 1990;31(suppl):503.
    • (1990) Invest Ophthalmol Vis Sci , vol.31 , Issue.SUPPL. , pp. 503
    • Goldbaum, M.H.1    Sample, P.A.2    White, H.3    Weinreb, R.N.4
  • 14
    • 3442886776 scopus 로고
    • A neural network can differentiate glaucoma and optic neuropathy visual fields through pattern recognition
    • Mills RP, Heijl A, eds, Malmo, Sweden, June 17-20, New York: Kugler Publications;
    • Kelman SE, Perell HF, D'Autrechy L, Scott RJ. A neural network can differentiate glaucoma and optic neuropathy visual fields through pattern recognition. In: Mills RP, Heijl A, eds. Perimetry Update 1990/1991: Proceedings of the Sixth International Perimetric Society Meeting, Malmo, Sweden, June 17-20, 1990. New York: Kugler Publications; 1991:287-90.
    • (1990) Perimetry Update 1990/1991: Proceedings of the Sixth International Perimetric Society Meeting , pp. 287-290
    • Kelman, S.E.1    Perell, H.F.2    D'Autrechy, L.3    Scott, R.J.4
  • 17
    • 84898983832 scopus 로고    scopus 로고
    • Mixtures of Gaussian processes
    • Leen TK, Dietterich TG, Tresp V, eds, Cambridge, MA: MIT Press;
    • Tresp V. Mixtures of Gaussian processes. In: Leen TK, Dietterich TG, Tresp V, eds. Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press; 2001:654-60.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 654-660
    • Tresp, V.1
  • 18
    • 0041641726 scopus 로고    scopus 로고
    • Committee machines
    • Hu YH, Hwang J-N, eds, Boca Raton, FL: CRC Press;, Chap 3
    • Tresp V. Committee machines. In: Hu YH, Hwang J-N, eds. Handbook of Neural Network Signal Processing. Boca Raton, FL: CRC Press; 2002. Chap 3.
    • (2002) Handbook of Neural Network Signal Processing
    • Tresp, V.1
  • 19
    • 0033071624 scopus 로고    scopus 로고
    • Neural networks for visual field analysis: How do they compare with other algorithms?
    • Lietman T, Eng J, Katz J, Quigley HA. Neural networks for visual field analysis: how do they compare with other algorithms? J Glaucoma 1999;8:77-80.
    • (1999) J Glaucoma , vol.8 , pp. 77-80
    • Lietman, T.1    Eng, J.2    Katz, J.3    Quigley, H.A.4
  • 20
    • 0028143590 scopus 로고
    • Advanced glaucoma intervention study. 2. Visual field test scoring and reliability
    • Advanced Glaucoma Intervention Study Group
    • Advanced Glaucoma Intervention Study Group. Advanced glaucoma intervention study. 2. Visual field test scoring and reliability. Ophthalmology 1994;101:1445-55.
    • (1994) Ophthalmology , vol.101 , pp. 1445-1455
  • 21
    • 0026714794 scopus 로고
    • Intraocular pressure reduction in normal-tension glaucoma patients. The normal tension glaucoma study group
    • Schulzer M. Intraocular pressure reduction in normal-tension glaucoma patients. The normal tension glaucoma study group. Ophthalmology 1992;99:1468-70.
    • (1992) Ophthalmology , vol.99 , pp. 1468-1470
    • Schulzer, M.1
  • 22
    • 33846321243 scopus 로고    scopus 로고
    • Trained artificial neural network for glaucoma diagnosis using visual field data: A comparison with conventional algorithms
    • Bizios D, Heijl A, Bengtsson B. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms. J Glaucoma 2007;16:20-8.
    • (2007) J Glaucoma , vol.16 , pp. 20-28
    • Bizios, D.1    Heijl, A.2    Bengtsson, B.3
  • 23
    • 32944476589 scopus 로고    scopus 로고
    • Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields
    • Bengtsson B, Bizios D, Heijl A. Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Invest Ophthalmol Vis Sci 2005;46:3730-6.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 3730-3736
    • Bengtsson, B.1    Bizios, D.2    Heijl, A.3
  • 24
    • 0029973541 scopus 로고    scopus 로고
    • Spatial classification of glaucomatous visual field loss
    • Henson DB, Spenceley SE, Bull DR. Spatial classification of glaucomatous visual field loss. Br J Ophthalmol 1996;80:526-31.
    • (1996) Br J Ophthalmol , vol.80 , pp. 526-531
    • Henson, D.B.1    Spenceley, S.E.2    Bull, D.R.3
  • 25
    • 0002445608 scopus 로고
    • Frequency distribution in early glaucomatous visual field defects
    • Aulhorn E, Karmeyer H. Frequency distribution in early glaucomatous visual field defects. Doc Ophthalmol Proc Ser 1977;14:75-83.
    • (1977) Doc Ophthalmol Proc Ser , vol.14 , pp. 75-83
    • Aulhorn, E.1    Karmeyer, H.2
  • 27
    • 0037848978 scopus 로고    scopus 로고
    • Variational learning of clusters of undercomplete non-symmetric independent components
    • Chan K, Lee TW, Sejnowski TJ. Variational learning of clusters of undercomplete non-symmetric independent components. J Mach Learn Res 2003;3:99-114.
    • (2003) J Mach Learn Res , vol.3 , pp. 99-114
    • Chan, K.1    Lee, T.W.2    Sejnowski, T.J.3
  • 28
    • 29944445992 scopus 로고    scopus 로고
    • Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects
    • Goldbaum MH. Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects. Trans Am Ophthalmol Soc 2005;103:270-80.
    • (2005) Trans Am Ophthalmol Soc , vol.103 , pp. 270-280
    • Goldbaum, M.H.1
  • 30
    • 0027178881 scopus 로고
    • A back propagation neural network for the classification of visual field data
    • Keating D, Mutlukan E, Evans A, McGarvie J, Damato B. A back propagation neural network for the classification of visual field data. Phys Med Biol 1993;38:1263-70.
    • (1993) Phys Med Biol , vol.38 , pp. 1263-1270
    • Keating, D.1    Mutlukan, E.2    Evans, A.3    McGarvie, J.4    Damato, B.5
  • 31
    • 0028116524 scopus 로고
    • Demonstration of a neural network expert system for recognition of glaucomatous visual field changes
    • Madsen EM, Yolton RL. Demonstration of a neural network expert system for recognition of glaucomatous visual field changes. Mil Med 1994;159:553-7.
    • (1994) Mil Med , vol.159 , pp. 553-557
    • Madsen, E.M.1    Yolton, R.L.2
  • 32
    • 0028245932 scopus 로고
    • Visual field interpretation with a personal computer based neural network
    • Mutlukan E, Keating D. Visual field interpretation with a personal computer based neural network. Eye 1994;8(Pt 3):321-3.
    • (1994) Eye , vol.8 , Issue.PART 3 , pp. 321-323
    • Mutlukan, E.1    Keating, D.2
  • 35
    • 67650331711 scopus 로고    scopus 로고
    • Goldbaum MH, Sample PA, Zangwill LM, Bowd C, Boden C, Lee TW, Zhang Z, Hao J, Sejnowski T, Weinreb RN. Probability of glaucoma determined from standard automated perimetry and from optic disc topography using relevance vector machine classifiers [abstract]. Invest Ophthalmol Vis Sci 2004;45:E-Abstract 2137.
    • Goldbaum MH, Sample PA, Zangwill LM, Bowd C, Boden C, Lee TW, Zhang Z, Hao J, Sejnowski T, Weinreb RN. Probability of glaucoma determined from standard automated perimetry and from optic disc topography using relevance vector machine classifiers [abstract]. Invest Ophthalmol Vis Sci 2004;45:E-Abstract 2137.
  • 36
    • 19344369418 scopus 로고    scopus 로고
    • A spatio-temporal Bayesian network classifier for understanding visual field deterioration
    • Tucker A, Vinciotti V, Liu X, Garway-Heath D. A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif Intell Med 2005;34:163-77.
    • (2005) Artif Intell Med , vol.34 , pp. 163-177
    • Tucker, A.1    Vinciotti, V.2    Liu, X.3    Garway-Heath, D.4
  • 37
    • 67650297914 scopus 로고    scopus 로고
    • Goldbaum MH, Sample PA, Zhang Z, Boden C, Lee TW, Hao J, Zangwill LM, Putthividhya P, Spinak DJ, Weinreb RN. Learning manifolds transformation for classification of standard automated perimetry [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 3733.
    • Goldbaum MH, Sample PA, Zhang Z, Boden C, Lee TW, Hao J, Zangwill LM, Putthividhya P, Spinak DJ, Weinreb RN. Learning manifolds transformation for classification of standard automated perimetry [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 3733.
  • 38
    • 67650285421 scopus 로고
    • Neural network classification of glaucoma using peripapillary nerve fiber thickness measured by scanning laser tomography
    • Dreher AW, Goldbaum MH, Cote BL, Hart WE, Bailey ED. Neural network classification of glaucoma using peripapillary nerve fiber thickness measured by scanning laser tomography. Invest Ophthalmol Vis Sci 1993;34(suppl):763.
    • (1993) Invest Ophthalmol Vis Sci , vol.34 , Issue.SUPPL. , pp. 763
    • Dreher, A.W.1    Goldbaum, M.H.2    Cote, B.L.3    Hart, W.E.4    Bailey, E.D.5
  • 39
    • 0029866233 scopus 로고    scopus 로고
    • Neural networks to identify glaucoma with structural and functional measurements
    • Brigatti L, Hoffman D, Caprioli J. Neural networks to identify glaucoma with structural and functional measurements. Am J Ophthalmol 1996;121:511-21.
    • (1996) Am J Ophthalmol , vol.121 , pp. 511-521
    • Brigatti, L.1    Hoffman, D.2    Caprioli, J.3
  • 40
    • 0029804465 scopus 로고    scopus 로고
    • Detection of structural damage from glaucoma with confocal laser image analysis
    • Uchida H, Brigatti L, Caprioli J. Detection of structural damage from glaucoma with confocal laser image analysis. Invest Ophthalmol Vis Sci 1996;37:2393-401.
    • (1996) Invest Ophthalmol Vis Sci , vol.37 , pp. 2393-2401
    • Uchida, H.1    Brigatti, L.2    Caprioli, J.3
  • 43
    • 0036846761 scopus 로고    scopus 로고
    • Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc
    • Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee TW, Sejnowski TJ, Weinreb RN. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Invest Ophthalmol Vis Sci 2002;43:3444-54.
    • (2002) Invest Ophthalmol Vis Sci , vol.43 , pp. 3444-3454
    • Bowd, C.1    Chan, K.2    Zangwill, L.M.3    Goldbaum, M.H.4    Lee, T.W.5    Sejnowski, T.J.6    Weinreb, R.N.7
  • 45
    • 33644673457 scopus 로고    scopus 로고
    • Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography
    • Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci 2005;46:4121-9.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 4121-4129
    • Huang, M.L.1    Chen, H.Y.2
  • 46
    • 33846896731 scopus 로고    scopus 로고
    • Rule extraction for glaucoma detection with summary data from StratusOCT
    • Huang ML, Chen HY, Lin JC. Rule extraction for glaucoma detection with summary data from StratusOCT. Invest Ophthalmol Vis Sci 2007;48:244-50.
    • (2007) Invest Ophthalmol Vis Sci , vol.48 , pp. 244-250
    • Huang, M.L.1    Chen, H.Y.2    Lin, J.C.3
  • 49
    • 0036086669 scopus 로고    scopus 로고
    • Active feature selection in optic nerve data using support vector machine
    • Honolulu, HI, May 12-17, Piscataway, NJ: IEEE Press;
    • Park JM, Reed J, Zhou Q. Active feature selection in optic nerve data using support vector machine. In: Proceedings of the 2002 International Joint Conference Neural Networks, Honolulu, HI, May 12-17, 2002. Piscataway, NJ: IEEE Press; 2002:1178-82.
    • (2002) Proceedings of the 2002 International Joint Conference Neural Networks , pp. 1178-1182
    • Park, J.M.1    Reed, J.2    Zhou, Q.3
  • 50
    • 0037211316 scopus 로고    scopus 로고
    • Bagging tree classifiers for laser scanning images: A data-and simulation-based strategy
    • Hothorn T, Lausen B. Bagging tree classifiers for laser scanning images: a data-and simulation-based strategy. Artif Intell Med 2003; 27:65-79.
    • (2003) Artif Intell Med , vol.27 , pp. 65-79
    • Hothorn, T.1    Lausen, B.2
  • 51
    • 0141651932 scopus 로고    scopus 로고
    • New glaucoma classification method based on standard Heidelberg retina tomograph parameters by bagging classification trees
    • Mardin CY, Hothorn T, Peters A, Junemann AG, Nguyen NX, Lausen B. New glaucoma classification method based on standard Heidelberg retina tomograph parameters by bagging classification trees. J Glaucoma 2003;12:340-6.
    • (2003) J Glaucoma , vol.12 , pp. 340-346
    • Mardin, C.Y.1    Hothorn, T.2    Peters, A.3    Junemann, A.G.4    Nguyen, N.X.5    Lausen, B.6
  • 52
    • 33747595630 scopus 로고    scopus 로고
    • Statistical and neural net methods for automatic glaucoma diagnosis determination
    • Pluhacek F, Pospisil J. Statistical and neural net methods for automatic glaucoma diagnosis determination. Cent Eur J Phys 2004;2: 12-24.
    • (2004) Cent Eur J Phys , vol.2 , pp. 12-24
    • Pluhacek, F.1    Pospisil, J.2
  • 53
    • 4344713313 scopus 로고    scopus 로고
    • Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers
    • Zangwill LM, Chan K, Bowd C, Hao J, Lee TW, Weinreb RN, Sejnowski TJ, Goldbaum MH. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci 2004;45:3144-51.
    • (2004) Invest Ophthalmol Vis Sci , vol.45 , pp. 3144-3151
    • Zangwill, L.M.1    Chan, K.2    Bowd, C.3    Hao, J.4    Lee, T.W.5    Weinreb, R.N.6    Sejnowski, T.J.7    Goldbaum, M.H.8
  • 54
    • 67650328598 scopus 로고    scopus 로고
    • Lee TW, Hao J, Bowd C, Zhang Z, Putthividhya D, Zangwill LM, Weinreb RN, Goldbaum MH. Learning low dimensional manifold representation of scanning laser polarimetry data from healthy and glaucomatous eyes [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 2529.
    • Lee TW, Hao J, Bowd C, Zhang Z, Putthividhya D, Zangwill LM, Weinreb RN, Goldbaum MH. Learning low dimensional manifold representation of scanning laser polarimetry data from healthy and glaucomatous eyes [abstract]. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 2529.
  • 56
    • 33746459739 scopus 로고    scopus 로고
    • Improving glaucoma diagnosis by the combination of perimetry and HRT measurements
    • Mardin CY, Peters A, Horn F, Junemann AG, Lausen B. Improving glaucoma diagnosis by the combination of perimetry and HRT measurements. J Glaucoma 2006;15:299-305.
    • (2006) J Glaucoma , vol.15 , pp. 299-305
    • Mardin, C.Y.1    Peters, A.2    Horn, F.3    Junemann, A.G.4    Lausen, B.5
  • 57
    • 39349103568 scopus 로고    scopus 로고
    • Diagnostic support for glaucoma using retinal images: A hybrid image analysis and data mining approach
    • Yu J, Abidi SS, Artes P, McIntyre A, Heywood M. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach. Stud Health Technol Inform 2005;116: 187-92.
    • (2005) Stud Health Technol Inform , vol.116 , pp. 187-192
    • Yu, J.1    Abidi, S.S.2    Artes, P.3    McIntyre, A.4    Heywood, M.5
  • 59
    • 0030958701 scopus 로고    scopus 로고
    • Automatic detection of glaucomatous visual field progression with neural networks
    • Brigatti L, Nouri-Mahdavi K, Weitzman M, Caprioli J. Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol 1997;115:725-8.
    • (1997) Arch Ophthalmol , vol.115 , pp. 725-728
    • Brigatti, L.1    Nouri-Mahdavi, K.2    Weitzman, M.3    Caprioli, J.4
  • 61
    • 0036323918 scopus 로고    scopus 로고
    • Structure and function evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP)
    • Johnson CA, Sample PA, Cioffi GA, Liebmann JR, Weinreb RN. Structure and function evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP). Am J Ophthalmol 2002;134:177-85.
    • (2002) Am J Ophthalmol , vol.134 , pp. 177-185
    • Johnson, C.A.1    Sample, P.A.2    Cioffi, G.A.3    Liebmann, J.R.4    Weinreb, R.N.5
  • 64
    • 0033498278 scopus 로고    scopus 로고
    • Early manifest glaucoma trial: Design and baseline data
    • Leske MC, Heijl A, Hyman L, Bengtsson B. Early manifest glaucoma trial: design and baseline data. Ophthalmology 1999;106:2144-53.
    • (1999) Ophthalmology , vol.106 , pp. 2144-2153
    • Leske, M.C.1    Heijl, A.2    Hyman, L.3    Bengtsson, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.